首页> 外文期刊>Journal of Structural Biology >Exploring the theoretical basis and limitations of cryo-STEM tomography for thick biological specimens
【24h】

Exploring the theoretical basis and limitations of cryo-STEM tomography for thick biological specimens

机译:富含生物标本的无冷茎断层扫描的理论基础和局限性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Scanning transmission electron microscope (STEM) imaging has recently been applied to the cryotomography of thick biological specimens. As previously shown for plastic sections, STEM has a number of advantages for cryo-imaging compared to conventional wide-field TEM imaging. STEM is insensitive to phase coherence and is therefore suitable for much thicker specimens than TEM. Imaging in focus, with a long depth of field, also circumvents the complications of an oscillatory contrast transfer function and missing information at low spatial frequencies. Moreover the image signal represents a quantitative measurement of the electron scattering pixel by pixel, so that absolute intensities can be interpreted in terms of material properties in the specimen. Resolution, however, is undoubtedly compromised for thick samples, especially in the regime of multiple elastic scattering. In this work we address the specific issues that arise in cryo-tomography of thick biological specimens. We formulate an imaging model based on a Boltzmann transport equation, complemented by Monte Carlo simulations. Using these theoretical tools, we identify conditions for image acquisition that will be compatible with the basic presumption of tomographic reconstruction, i.e., that for a given composition the imaging signal varies monotonically with thickness. For optimal resolution, contrast, and signal strength, we propose to generalize the on-axis bright field detector to collect at angles well beyond the illumination cone. Our results justify the generation of 3D images for micron thicknesses and beyond. (C) 2016 Elsevier Inc. All rights reserved.
机译:扫描透射电子显微镜(Stew)成像最近应用于厚生物样本的电力分析。如前所述所示的塑料部分,与传统的宽场TEM成像相比,阀杆对冷冻成像具有许多优点。茎对相干不敏感,因此适用于比TEM更厚的样本。焦点上的成像,具有较长的景深,还避免了振荡对比传递函数的并发症,并且在低空间频率下丢失的信息。此外,图像信号表示通过像素的电子散射像素的定量测量,从而可以在样本中的材料特性方面解释绝对强度。然而,分辨率无疑是厚实的样品,特别是在多个弹性散射的方案中。在这项工作中,我们解决了厚生物标本的冷冻层析成像中出现的具体问题。我们制定了基于Boltzmann传输方程的成像模型,由Monte Carlo仿真补充。使用这些理论工具,我们识别图像采集条件,该图像采集将与断层切断重建的基本推定相容,即,对于给定的组合,成像信号随着厚度单调而变化。为了最佳分辨率,对比度和信号强度,我们建议概括轴上明场检测器,以便在范围内收集到照明锥的角度。我们的结果为微米厚度和超越的3D图像产生了典范。 (c)2016年Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号