首页> 外文期刊>Journal of solid state electrochemistry >Enhanced energy storage performance of nanocrystalline Sm-doped CoFe2O4 as an effective anode material for Li-ion battery applications
【24h】

Enhanced energy storage performance of nanocrystalline Sm-doped CoFe2O4 as an effective anode material for Li-ion battery applications

机译:增强纳米晶SM掺杂COFE2O4的能量储存性能作为锂离子电池应用的有效阳极材料

获取原文
获取原文并翻译 | 示例
           

摘要

A simple modified combustion method was demonstrated in the development of cobalt ferrite (CoFe2O4) and samarium (Sm)-doped CoFe2O4 nanostructures. The Sm3+-doped CoFe2O4 can significantly affect their crystallite size, lattice parameter, and electrical and electrochemical properties. The powder X-ray diffraction analysis revealed the formation of cubic spinel CoFe2O4. The structural coordination of pristine and Sm3+-doped CoFe2O4 samples was confirmed by Raman and Fourier transform infrared spectroscopy analyses and also peak positions of Sm3+-doped CoFe2O4 sample shifted toward lower wavenumber, which may be due to the cell expansion resulting from Sm3+ doping in CoFe2O4 structure. In addition to above, X-ray photoelectron spectroscopy results clearly demonstrated the doping of Sm3+ into CoFe2O4 crystal lattice. The electrical conductivity of Sm3+-doped CoFe2O4 is one order of magnitude higher than that of pristine CoF2O4. The prepared pristine and Sm3+-doped CoFe2O4 samples were investigated as an anode material for lithium (Li)-ion batteries. The Sm3+-doped CoFe2O4 anode showed a better reversibility and rate performance than the pristine CoFe2O4 anode. Also, the Sm3+-doped CoFe2O4 electrode exhibited a stable cycling performance with a discharge capacity of 800 mAh g(-1) after 150 cycles at 0.1 C and delivered a discharge capacity of 778 mAh g(-1) after 400 cycles at 200 mA g(-1). The observed high electrochemical performance of Sm3+-doped CoFe2O4 electrode may be attributed to its improved structural stability and enhanced oxidation reaction which maintain the number of Li ions involved in the charge-discharge process.
机译:在钴铁氧体(COFE2O4)和钐(SM) - 掺杂的COFE2O4纳米结构中,证明了一种简单的改性燃烧方法。 SM3 +掺杂的COFE2O4可以显着影响它们的微晶尺寸,晶格参数和电化学和电化学性质。粉末X射线衍射分析显示立方尖晶石COFE2O4的形成。通过拉曼和傅立叶变换红外光谱分析证实了原始和SM3 +掺杂的COFE2O4样品的结构配位,并且SM3 +掺杂的COFE2O4样品的峰位置朝向下波数移位,这可能是由于COFE2O4中的SM3 +掺杂引起的电池膨胀。结构体。除了上述外,X射线光电子能谱结果明确证明了SM3 +进入COFE2O4晶格的掺杂。 SM3 +掺杂的COFE2O4的电导率是比原始COF2O4高一种数量级。研究了制备的原始和SM3 +掺杂的COFE2O4样品作为锂(Li)电池的阳极材料。 SM3 +掺杂的COFE2O4阳极显示出比原始COFE2O4阳极更好的可逆性和速率性能。而且,SM3 +掺杂的COFE2O4电极在0.1℃下150次循环后,在150mAhg(-1)的放电容量下表现出稳定的循环性能,并在200 mA的400次循环后输送778mahg(-1)的放电容量g(-1)。所观察到的SM3 +掺杂的COFE2O4电极的高电化学性能可以归因于其改进的结构稳定性和增强的氧化反应,其维持涉及电荷 - 放电过程中涉及的Li离子的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号