...
首页> 外文期刊>Journal of Petroleum Science & Engineering >Pore network modeling of the Non-Darcy flows in shale and tight formations
【24h】

Pore network modeling of the Non-Darcy flows in shale and tight formations

机译:孔隙网络建模的非达西流动的页岩和紧密形成

获取原文
获取原文并翻译 | 示例
           

摘要

Pore network modeling is a powerful tool to simulate multiphase flow in porous media. Quasi-static model is used in this work and the drainage displacement process is simulated. In shale and tight formations, there are proposed non-Darcy flow mechanisms: gas non-Darcy flow and liquid low velocity non-Darcy flow. The gas flow in shale and tight formations is generally classified in slip flow and transitional flow regimes according to the Knudsen number values. The BK model (Beskok and Karniadakis, 1999) is used for gas non-Darcy flow in this study and the liquid low velocity non-Darcy flow is mainly based on our previous work (Wang and Sheng, 2017a, b). Both effects are incorporated into our pore network model separately. For gas-water flow, gas is the non-wetting phase with gas non-Darcy flow and water is the wetting phase with Darcy flow. For oil-water flow, the low velocity non-Darcy flow is considered for both water and oil phases. Then our model is applied in 3 cases. Case 1 is the Berea sandstone (Valvatne, 2004), which is the benchmark for conventional pore network modeling. In this case, no non-Darcy flows is considered in our pore network model and it is totally Darcy flow. The absolute permeability and relative permeability are both matched with the experimental data. Case 2 is the Bossier tight gas sandstone (Rushing et al., 2003). Gas apparent permeability vs. pressure was measured at different water saturations in their experiments. In this way, the gas non-Darcy flow in two-phase conditions are verified. Case 3 is the Barnett shale (Moghaddam and Jamiolahmady, 2016), which is our major focus. The two types of non-Darcy flows are studied and further discussed in this case. Specifically, the effect of gas non-Darcy flow enhances the gas permeability 2.66 times of the Darcy permeability when pressure is 10 MPa, while the effect of liquid low velocity non-Darcy flow decreases the liquid permeability to 40% of the Darcy permeability when pressure gradient is 0.1 MPa/m. Two types of relative permeability (k(r)) definition are presented in this study: Darcy permeability based kr and normalized k(r) where non-Darcy permeability is used as the base permeability. In the results, the normalized relative permeability doesn't change much for both non-Darcy flows, which implies that we can probably assume the relative permeability unchanged and just consider the effect on absolute permeability, when we deal with these non-Darcy flow mechanisms.
机译:孔网络建模是一种强大的工具,可以在多孔介质中模拟多相流。在这项工作中使用准静态模型,并模拟排水位移过程。在页岩和紧张的地层中,提出了非达西流动机制:气体非达西流量和液体低速非达西流。根据knudsen数值,页岩和紧密地层的气流通常被分类为滑动流动和过渡流程。 BK型号(Beskok和Karniadakis,1999)用于本研究中的气体非达西流动,液体低速非达西流动主要基于我们以前的工作(王和盛,2017A,B)。两种效果都分别纳入我们的孔网络模型。对于气流,气体是具有气体非达西流动的非润湿相位,水是含达西流的润湿相位。对于水流量,考虑水和油阶段的低速非达西流。然后我们的模型适用于3例。案例1是Berea Sandstone(Valvatne,2004),这是传统孔隙网络建模的基准。在这种情况下,我们的孔网络模型中没有考虑非达西流动,并且是完全达西的流动。绝对渗透性和相对渗透性均与实验数据相匹配。案例2是突发的靠气体砂岩(Rushing等,2003)。气体表观渗透率与压力在其实验中的不同水饱和状态下测量。以这种方式,验证了两相条件下的气体非达西流动。案例3是Barnett Shale(Moghaddam和Jamiolahmady,2016),这是我们的重点。在这种情况下,研究并进一步讨论了两种非达西流动。具体地,当压力为10MPa时,气体非达西流量的效果增强了达西渗透率的煤气渗透率2.66倍,而液体低速非达西流动的效果会在压力时降低液态渗透率至达西渗透率的40%梯度为0.1 mpa / m。本研究提出了两种类型的相对渗透率(K(R))定义:基于达西渗透性的KR和归一化K(R),其中非达到渗透性被用作基础渗透性。在结果中,对于非达西流动,归一化相对渗透性不会改变很大,这意味着我们可能认为相对渗透性不变,并且当我们处理这些非达西流动机制时,我们可能会占据相对渗透率并考虑对绝对渗透率的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号