首页> 外文期刊>Journal of Petroleum Science & Engineering >Prevention of methane hydrate re-formation in transport pipeline using thermodynamic and kinetic hydrate inhibitors
【24h】

Prevention of methane hydrate re-formation in transport pipeline using thermodynamic and kinetic hydrate inhibitors

机译:使用热力学和动力学水合物抑制剂预防运输管道中的甲烷水合物重新形成

获取原文
获取原文并翻译 | 示例
           

摘要

Methane gas produced from marine hydrate deposits will flow together with dissociated water in two phases, and the risk of hydrate reformation must be managed. This study used the OLGA multiphase flow simulation software to simulate methane transportation with dissociated water through a vertical 2160 m pipeline in order to determine the amount of monoethylene glycol (MEG) as a thermodynamic hydrate inhibitor. When the hydrate saturation ratio in hydrate deposits varies, a large amount of MEG becomes inevitable. Moreover, when undesired water breakthrough occurs, the MEG concentration would decrease to where hydrates may re-form before responding in the offshore platform. A risk management strategy for hydrate reformation is investigated by adopting under-inhibition with MEG and the addition of PVCap as a kinetic hydrate inhibitor (KHI). The experimental results in high pressure autoclave showed that PVCap exhibited a limited performance in delaying the hydrate formation in a high subcooling condition. Considering the vertical flowline of 2160 m, the delay time was not sufficient to prevent the hydrate re-formation in the transport pipeline. Complete prevention of hydrate re-formation can be avoided with 35 wt% MEG concentration, however decreasing the MEG concentration to 20 wt% was also feasible in order to avoid hydrate formation since it was not observed for more than 960 min. In the presence of 0.1 wt% of PVCap and 10 wt% MEG, the hydrate delay time was of about 311.5 min. This delay time is 76% longer than the residence time of methane and water mixture in the transport pipeline, thus this synergistic inhibition can significantly reduce the injection rate of MEG while preventing hydrate formation. This is the first work suggesting a risk management strategy for hydrate reformation in hydrate production system, and thus will provide insights to develop advanced hydrate production technologies.
机译:由海洋水合物沉积物产生的甲烷气体将在两个阶段与解离水一起流动,必须管理水合物重整的风险。该研究使用OLGA多相流动仿真软件通过垂直2160M管道将甲烷运输模拟,以确定作为热力学水合物抑制剂的一甲基乙二醇(MEG)的量。当水合物沉积物中的水合物饱和度变化时,大量的MEG变得不可避免。此外,当发生不受欢迎的水突破时,MEG浓度将减少到水合物在近海平台的回应之前可以重新形成的地方。通过用MEG抑制和添加PVCAP作为动力学水合物抑制剂(KHI)来研究水合物改革的风险管理策略。高压高压釜中的实验结果表明,PVCAP在高温过冷条件下延迟水合物形成时表现出有限的性能。考虑到2160μm的垂直流线,延迟时间不足以防止运输管道中的水合物重新形成。可以通过35wt%的百次浓度避免完全预防水合物重塑,但是将MEG浓度降低至20wt%也是可行的,以避免水合物形成,因为它未观察到超过960分钟。在0.1wt%的PVCAP和10wt%兆的存在下,水合物延迟时间为约311.5分钟。该延迟时间比甲烷和水混合物在运输管道中的停留时间长76%,因此这种协同抑制可以显着降低梅格的注射率,同时防止水合物形成。这是第一项工作,表明水合物生产系统中水合物改革风险管理策略,从而提供了开发先进水合物生产技术的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号