首页> 外文期刊>Biotechnology Journal: Healthcare,Nutrition,Technology >Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation
【24h】

Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation

机译:微生物燃料电池中生物膜空间异质性的代谢建模揭示了电流产生中的基质限制

获取原文
获取原文并翻译 | 示例
           

摘要

Microbial fuel cells (MFCs) have been proposed as an alternative energy resource for the conversion of organic compounds to electricity. In an MFC, microorganisms such as Geobacter sulfurreducens form an anode-associated biofilm that can completely oxidize organic matter (electron donor) to carbon dioxide with direct electron transfer to the anode (electron acceptor). Mathematical models are useful in analyzing biofilm processes; however, existing models rely on Nernst-Monod type expressions, and evaluate extracellular processes separated from the intracellular metabolism of the microorganism. Thus, models that combine both extracellular and intracellular components, while addressing spatial heterogeneity, are essential for improved representation of biofilm processes. The goal of this work is to develop a model that integrates genome-scale metabolic models with the model of biofilm environment. This integrated model shows the variations of electrical current production and biofilm thickness under the presence/absence of NH4 in the bulk solution, and under varying maintenance energy demands. Further, sensitivity analysis suggested that conductivity is not limiting electrical current generation and that increasing cell density can lead to enhanced current generation. In addition, the modeling results also highlight instances such as the transformation into respiring cells, where the mechanism of electrical current generation during biofilm development is not yet clearly understood.
机译:已经提出了微生物燃料电池(MFC)作为将有机化合物转化为电的替代能源。在MFC中,微生物如还原性土壤细菌形成一种与阳极相关的生物膜,该膜可将有机物(电子供体)完全氧化为二氧化碳,并直接将电子转移至阳极(电子受体)。数学模型可用于分析生物膜过程;但是,现有模型依赖于Nernst-Monod类型的表达,并评估与微生物细胞内代谢分离的细胞外过程。因此,在解决空间异质性的同时结合细胞外和细胞内成分的模型对于改善生物膜过程的表现至关重要。这项工作的目的是开发一个将基因组规模的代谢模型与生物膜环境模型整合在一起的模型。该集成模型显示了在整体溶液中是否存在NH4以及维持能源需求不断变化的情况下,电流产生和生物膜厚度的变化。此外,敏感性分析表明,电导率并不限制电流的产生,而增加的电池密度可以导致电流产生的增加。另外,建模结果还突出了实例,例如转化为呼吸细胞,其中尚未清楚了解生物膜发育过程中电流产生的机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号