...
首页> 外文期刊>Biotechnology and Bioengineering >Concurrent Microbial Reduction of High Concentrations of Nitrate and Perchlorate in an Ion Exchange Membrane Bioreactor
【24h】

Concurrent Microbial Reduction of High Concentrations of Nitrate and Perchlorate in an Ion Exchange Membrane Bioreactor

机译:离子交换膜生物反应器中高浓度硝酸盐和高氯酸盐的同时微生物还原

获取原文
获取原文并翻译 | 示例
           

摘要

We investigated effective simultaneous removal of high loads of nitrate and perchlorate from synthetic groundwater using an ion exchange membrane bioreactor (IEMB). The aim of this research was to characterize both transport aspects and biodegradation mechanisms involved in the treatment process of high loads of the two anions. Biodegradation process was proven to be efficient with over 99% efficiency of both perchlorate and nitrate, regardless of their load. The maximum biodegradation rates were 18.3 (mmol m(-2) h(-1)) and 5.5 (mmol m(-2) h(-1)) for nitrate and perchlorate, respectively. The presence of a biofilm on the bio-side of the membrane only slightly increased the nitrate and perchlorate transmembrane flux as compared to the measured flux during a Donnan dialysis experiment where there is no biodegradation of perchlorate and nitrate in the bio-compartment. The nitrate flux in presence of a biofilm was 18.3 (+/- 1.9) (mmole m(-2) h(-1)), while without the biofilm, the flux was 16.9 (+/- 1.5) (mmole m(-2) h(-1)) for the same feed inlet nitrate concentration of 4 mM. The perchlorate transmembrane flux increased similarly by an average of 5%. Samples of membrane biofilm and suspended bacteria from the bio-reactor were analyzed for diversity and abundance of the perchlorate and nitrate reducing bacteria. Klebsiella oxytoca, known as a glycerol fermenter, accounted for 70% of the suspended bacteria. In contrast, perchlorate and nitrate reducing bacteria predominated in the biofilm present on the membrane. These results are consistent with our proposed two stage biodegradation mechanism where glycerol is first fermented in the suspended phase of the bio-reactor and the fermentation products drive perchlorate and nitrate bio-reduction in the biofilm attached to the membrane. These results suggest that the niche exclusion of microbial populations in between the reactor and membrane is controlled by the fluxes of the electron donors and acceptors. Such a mechanism has important implications for controlling the bio-reduction reaction in the IEMB when using glycerol as a carbon source and allowing treating a complex contamination of high concentrations of perchlorate and nitrating in groundwater and successfully biodegrading them to non-hazardous components. (C) 2016 Wiley Periodicals, Inc.
机译:我们研究了使用离子交换膜生物反应器(IEMB)从合成地下水中同时有效去除高浓度硝酸盐和高氯酸盐的方法。这项研究的目的是表征两种阴离子高负荷处理过程中涉及的运输方面和生物降解机理。事实证明,无论负载量如何,生物降解过程都是有效的,高氯酸盐和硝酸盐的效率均超过99%。硝酸盐和高氯酸盐的最大生物降解率分别为18.3(mmol m(-2)h(-1))和5.5(mmol m(-2)h(-1))。与在Donnan透析实验中测得的通量相比,膜生物侧上生物膜的存在仅使硝酸盐和高氯酸盐的跨膜通量略有增加,在生物实验中,高氯酸盐和硝酸盐没有生物降解。存在生物膜时的硝酸盐通量为18.3(+/- 1.9)(mmol m(-2)h(-1)),而没有生物膜时的硝酸盐通量为16.9(+/- 1.5)(mmol m(- 2)对于相同的进料口硝酸盐浓度为4 mM的h(-1))。高氯酸盐跨膜通量平均增加了5%。分析了来自生物反应器的膜生物膜和悬浮细菌样品的高氯酸盐和硝酸盐还原菌的多样性和丰度。产酸克雷伯菌(Klebsiella oxytoca),称为甘油发酵罐,占悬浮菌的70%。相反,高氯酸盐和硝酸盐还原菌主要存在于膜上的生物膜中。这些结果与我们提出的两阶段生物降解机制一致,在该机制中,甘油首先在生物反应器的悬浮相中发酵,发酵产物驱动附着在膜上的生物膜中的高氯酸盐和硝酸盐生物还原。这些结果表明,在反应器和膜之间的微生物种群的生态位排除是由电子供体和受体的通量控制的。当使用甘油作为碳源时,这种机制对于控制IEMB中的生物还原反应具有重要意义,并允许处理地下水中高浓度高氯酸盐和硝化的复杂污染并将其成功生物降解成非危险成分。 (C)2016威利期刊公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号