...
首页> 外文期刊>Journal of molecular modeling >Evaluating apoenzyme-coenzyme-substrate interactions of methane monooxygenase with an engineered active site for electron harvesting: a computational study
【24h】

Evaluating apoenzyme-coenzyme-substrate interactions of methane monooxygenase with an engineered active site for electron harvesting: a computational study

机译:评价甲烷单氧化酶的致剂酶 - 辅酶 - 基质相互作用,用于电子收集的工程活性位点:计算研究

获取原文
获取原文并翻译 | 示例

摘要

Low-temperature methane oxidation is one of the greatest challenges in energy research. Although methane monooxygenase (MMO) does this catalysis naturally, how to use this biocatalyst in a fuel cell environment where the electrons generated during the oxidation process is harvested and used for energy generation has not yet been investigated. A key requirement to use this enzyme in a fuel cell is wiring of the active site of the enzyme directly to the supporting electrode. In soluble MMO (sMMO), two cofactors, i.e., nicotinamide adenine di-nucleotide (NAD+) and flavin adenine dinucleotide (FAD) provide opportunities for direct attachment of the enzyme system to a supporting electrode. However, once modified to be compatible with a supporting metal electrode via FeS functionalization, how the two cofactors respond to complex binding phenomena is not yet understood. Using docking and molecular dynamic simulations, modified cofactors interactions with sMMO-reductase (sMMOR) were studied. Studies revealed that FAD modification with FeS did not interfere with binding phenomena. In fact, FeS introduction significantly improved the binding affinity of FAD and NAD+ on sMMOR. The simulations revealed a clear thermodynamically more favorable electron transport path for the enzyme system. This system can be used as a fuel cell and we can use FeS-modified-FAD as the anchoring molecule as opposed to using NAD+. The overall analysis suggests the strong possibility of building a fuel cell that could catalyze methane oxidation using sMMO as the anode biocatalyst.
机译:低温甲烷氧化是能源研究中最大的挑战之一。虽然甲烷单氧基酶(MMO)自然催化,但如何在燃料电池环境中使用该生物催化剂,其中收获在氧化过程中产生的电子和用于能量产生的电子。在燃料电池中使用该酶的关键要求是直接向支撑电极的酶的活性位点的布线。在可溶性MMO(SMMO)中,两种辅助粘液剂,即烟酰胺腺嘌呤二核苷酸(NAD +)和黄素腺嘌呤二核苷酸(FAD)提供了将酶系统直接连接到支撑电极的机会。然而,一旦经过FES官能化,修改以与支撑金属电极兼容,两种辅助因子如何尚未理解复杂的结合现象。使用对接和分子动态模拟,研究了与SMMO-还原酶(SMMOR)相互作用的改良辅因子。研究表明,用FE的FAD改性并没有干扰结合现象。事实上,FES引入显着改善了FAD和NAD +对SMMOR的结合亲和力。仿真揭示了酶系统的清晰热力学上更有利的电子传输路径。该系统可用作燃料电池,我们可以使用FES-Modified-FAD作为锚定分子,而不是使用NAD +。整体分析表明,建立燃料电池的强有力,可以使用SMMO作为阳极生物催化剂催化甲烷氧化的燃料电池。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号