首页> 外文期刊>Journal of natural gas science and engineering >Digital evaluation of nanoscale-pore shale fractal dimension with microstructural insights into shale permeability
【24h】

Digital evaluation of nanoscale-pore shale fractal dimension with microstructural insights into shale permeability

机译:纳米镜孔隙分形尺寸的数字评价,具有微观结构见解进入页岩渗透性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Permeability significantly affects the production of shale oil and shale gas, and shale microstructures characterized by pore and fracture spaces innately affect the permeability. However, the quantitative characterization of permeability related to pore and facture spaces is not fully understood. This work aims to propose 3D spatial fracture-pore fractal dimensions to predict shale permeability and their effects on fluid flow behaviors. First, triaxial compressive stress and X-ray CT imaging tests are conducted on shale samples to establish fractural models. The digital surface roughness segmentation (DSRS) method is then proposed to obtain the fracture-pore microstructures. Next, spatial fractal dimensions of self-similarity microstructures are proposed to predict the microstructural permeability. Finally, two-phase fluid flows are simulated to study the hydrocarbon flow behaviors in fractural microstructures using the level set method. The results show that the average relative errors between the microstructural spatial dimensions and theoretical fractal dimensions are all less than 3%, highlighting the accuracy of the proposed method. The numerical results for permeability are very close to the analytical solutions, in which fracture permeability is almost 100 times the order of magnitude of the pore structure permeability in the nanoscale pore shale, and the facture and pore structure permeabilities both increase with increasing spatial fractal dimension. The changes of fluid flow behaviors are similar to the permeability variations, and the fluid phase fraction increases with increasing fractal dimension.
机译:渗透性会显着影响页岩油和页岩气的生产,并且具有孔隙和骨折空间以孔隙和骨折的物质组织的产生。然而,与孔隙和特征空间相关的渗透性的定量表征尚不完全理解。这项工作旨在提出3D空间骨折 - 孔分形尺寸,以预测页岩渗透性及其对流体流动行为的影响。首先,在页岩样品上进行三轴压缩应力和X射线CT成像测试,以建立浅薄模型。然后提出数字表面粗糙度分割(DSRS)方法以获得骨折微粒体结构。接下来,提出了自相似性微结构的空间分形尺寸来预测微观结构渗透性。最后,模拟了两相流体流动,以使用水平设定方法研究烃流动中的烃流动。结果表明,微观结构空间尺寸和理论分形尺寸之间的平均相对误差均小于3%,突出了所提出的方法的准确性。渗透性的数值结果非常接近分析溶液,其中骨折渗透率几乎100倍的孔隙结构渗透率在纳米尺度孔隙页岩中的尺寸级,以及随着空间分形尺寸的增加而增加,既增加。流体流动行为的变化类似于渗透性变化,并且流体相位分数随着分形尺寸的增加而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号