首页> 外文期刊>Journal of natural gas science and engineering >Adaptive finite element-discrete element analysis for the multistage supercritical CO2 fracturing and microseismic modelling of horizontal wells in tight reservoirs considering pre-existing fractures and thermal-hydromechanical coupling
【24h】

Adaptive finite element-discrete element analysis for the multistage supercritical CO2 fracturing and microseismic modelling of horizontal wells in tight reservoirs considering pre-existing fractures and thermal-hydromechanical coupling

机译:考虑预先存在的裂缝和热流体机械耦合,微腔超临界CO2压裂和微震模型的多级超临界CO2压裂和微震建模的自适应有限元 - 分析

获取原文
获取原文并翻译 | 示例
       

摘要

Compared with conventional water-based fracturing, the supercritical CO2 (SC-CO2) fracturing technology can potentially improve the fracturing effect and gas production in unconventional tight reservoirs. To comprehend the key mechanical mechanism of this technology, some governing issues, such as the heat transfer between the injected SC-CO2 and rock matrix, multistage fracturing, pre-existing fractures, and fracturing-induced damaged, and contact slip events, need to be properly simulated via numerical approaches. However, the challenge of characterizing the complex structure of natural fractures and the physical properties of SC-CO2 that significantly affect fracturing and heat transfer in porous rock matrix have not been satisfactorily solved. To overcome the shortcomings of the conventional finite element methods that impede the automatic remeshing to fit the simulation of fracture propagation, in this study, we introduce an adaptive finite element-discrete element method and local remeshing strategy to simulate the propagation of fracturing fractures. The proposed numerical model involves the crucial governing issues of a multistage SC-CO2 fracturing, such as heat transfer, thermal-hydro-mechanical coupling, the interaction between the fracturing fractures and the embedded preexisting fractures, leak-off of fracturing fluid, proppant transport, and gas production prediction. Based on the changes of the computed stresses, the distribution and magnitudes of microseismic damaged and contact slip events can be identified, allowing us to predict the microseism caused by fracturing. The fracture network and consequent heat transfer and fluid flow induced by slick water and SC-CO2 fracturing in engineering-scale unfractured and naturally fractured models are compared in the same manner to evaluate the influence of SC-CO2 on multistage fracturing behaviour, thermal effects, gas production, and microseismic effects. Numerical results show that SC-CO2 fracturing can improve the fracturing effect as well as increase the production rates but may not simultaneously induce additional microseismic events.
机译:与常规水基压裂相比,超临界CO2(SC-CO2)压裂技术可能会在非常规紧密水库中潜在地改善压裂效果和天然气生产。要理解这项技术的关键机械机制,一些管理问题,如注射的SC-CO2和岩石基质之间的传热,多级压裂,预先存在的骨折,以及压裂引起的受损,并需要接触滑动事件,需要通过数值方法正确模拟。然而,表征自然骨折复杂结构的挑战和SC-CO2的物理性质显着影响多孔岩矩阵中的压裂和热传递尚未得到令人满意的解决。为了克服妨碍自动回忆的常规有限元方法的缺点,以适应骨折传播的模拟,在本研究中,我们引入了一种自适应有限元离散元件方法和局部回忆策略,以模拟压裂骨折的传播。所提出的数值模型涉及多级SC-CO2压裂的关键问题,如传热,热 - 机械耦合,压裂骨折和嵌入的预先存在的骨折之间的相互作用,压裂液泄漏,支撑剂运输和天然气生产预测。基于所计算的应力的变化,可以识别微震损坏和接触液相识事件的分布和幅度,使我们能够预测压裂引起的微血症。通过相同的方式比较裂缝网络和由SC-CO2压裂诱导的裂缝网络和由SC-CO2压裂的流体流量,以相同的方式评估SC-CO2对多级压裂行为,热效应的影响天然气生产和微观效应。数值结果表明,SC-CO2压裂可以提高压裂效果以及增加生产率,但不同时诱导额外的微震事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号