首页> 外文期刊>Journal of neurotrauma >Divergent Induction of Branched-Chain Aminotransferases and Phosphorylation of Branched Chain Keto-Acid Dehydrogenase Is a Potential Mechanism Coupling Branched-Chain Keto-Acid-Mediated-Astrocyte Activation to Branched-Chain Amino Acid Depletion-Mediated Cognitive Deficit after Traumatic Brain Injury
【24h】

Divergent Induction of Branched-Chain Aminotransferases and Phosphorylation of Branched Chain Keto-Acid Dehydrogenase Is a Potential Mechanism Coupling Branched-Chain Keto-Acid-Mediated-Astrocyte Activation to Branched-Chain Amino Acid Depletion-Mediated Cognitive Deficit after Traumatic Brain Injury

机译:支链氨基转移酶的发散诱导和支链酮酸脱氢酶的磷酸化是耦合支链酮酸介导的星形胶质细胞活化的潜在机制,在创伤性脑损伤后支链氨基酸耗尽介导的认知缺陷

获取原文
获取原文并翻译 | 示例
           

摘要

Deficient branched-chain amino acids (BCAAs) are implicated in cognitive dysfunction after traumatic brain injury (TBI). The mechanism remains unknown. BCAAs are catabolized by neuron-specific cytosolic and astrocyte-specific mitochondrial branched-chain aminotransferases (BCATc, BCATm) to generate glutamate and branched-chain keto-acids (BCKAs) that are metabolized by the mitochondrial branched-chain keto-acid dehydrogenase (BCKD) whose activity is regulated by its phosphorylation state. BCKD phosphorylation by BCKD kinase (BCKDK) inactivates BCKD and cause neurocognitive dysfunction, whereas dephosphorylation by specific phosphatase restores BCKD activity. Real-time polymerase chain reaction showed rapidly and significantly decreased BCATc messenger RNA (mRNA) levels, but significantly increased BCATm mRNA level post-CCI (controlled cortical impact). BCKD and BCKDK mRNA decreased significantly immediately after CCI-induced TBI (CCI) in the rat. Phosphorylated BCKD proteins (pBCKD) increased significantly in the ipsilateral-CCI hemisphere. Immunohistochemistry revealed significantly increased pBCKD proteins in ipsilateral astrocytes post-CCI. BCKD protein expression is higher in primarily cultured cortical neurons than in astrocytes, whereas pBCKD protein level is higher in astrocytes than in cortical neurons. Transforming growth factor beta treatment (10 mu g/mL for 48 h) significantly increased pBCKD protein expression in astrocytes, whereas glutamate treatment (25 mu M for 24 h) significantly decreased pBCKD protein in neurons. Because increased pBCKD would lead to increased BCKA accumulation, BCKA-mediated astrocyte activation, cell death, and cognitive dysfunction as found in maple syrup urine disease; thus, TBI may potentially induce cognitive deficit through diverting BCAA from glutamate production in neurons to BCKA production in astrocytes through the pBCKD-dependent mechanism.
机译:缺乏支链氨基酸(BCAAs)涉及创伤性脑损伤后的认知功能障碍(TBI)。该机制仍然未知。 BCAAS由神经元特异性细胞囊型和星形胶质细胞特异性线粒体分支链氨基转移酶(BCATC,BCATM)分解,以产生由线粒体支链酮酸脱氢酶代谢的谷氨酸和支链酮酸(Bckas)(Bckd )其活性由其磷酸化状态调节。 BCKD激酶(BCKDK)灭活BCKD并引起神经认知功能障碍的BCKD磷酸化,而特异性磷酸酶的去磷酸化恢复BCKD活性。实时聚合酶链反应迅速显示,BCATC信使RNA(mRNA)水平显着降低,但BCATM mRNA水平明显增加CCI(受控皮质冲击)。在大鼠中CCI诱导的TBI(CCI)后,BCKD和BCKDK mRNA显着降低。磷酸化的BCKD蛋白(PBCKD)在Ipsilidatal-CCI半球中显着增加。免疫组织化学在CCI后同侧星形胶质细胞中显着增加了PBCKD蛋白。 BCKD蛋白表达主要培养皮质神经元大于星形胶质细胞,而PBCKD蛋白质水平高于皮质神经元细胞胶质细胞。转化生长因子β治疗(10μg/ ml 48小时)显着增加了星形胶质细胞的PBCKD蛋白表达,而谷氨酸处理(25亩24小时)显着降低了神经元的PBCKD蛋白。由于PBCKD的增加将导致BCKA积累,Bcka介导的星形细胞活化,细胞死亡和认知功能障碍,如枫糖浆尿疾病所发现的;因此,TBI可能通过将BCAA从神经元中的谷氨酸生产转移到星形胶质细胞中通过PBCKD依赖性机制转移到BCKA生产中,TBI可能诱导认知缺损。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号