首页> 美国卫生研究院文献>Journal of Neurotrauma >Divergent Induction of Branched-Chain Aminotransferases and Phosphorylation of Branched Chain Keto-Acid Dehydrogenase Is a Potential Mechanism Coupling Branched-Chain Keto-Acid–Mediated-Astrocyte Activation to Branched-Chain Amino Acid Depletion-Mediated Cognitive Deficit after Traumatic Brain Injury
【2h】

Divergent Induction of Branched-Chain Aminotransferases and Phosphorylation of Branched Chain Keto-Acid Dehydrogenase Is a Potential Mechanism Coupling Branched-Chain Keto-Acid–Mediated-Astrocyte Activation to Branched-Chain Amino Acid Depletion-Mediated Cognitive Deficit after Traumatic Brain Injury

机译:创伤性脑损伤后分支链氨基转移酶的不同诱导和分支链酮酸脱氢酶的磷酸化是将分支链酮酸介导的星形胶质细胞活化耦合到分支链氨基酸耗竭介导的认知缺陷的潜在机制。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deficient branched-chain amino acids (BCAAs) are implicated in cognitive dysfunction after traumatic brain injury (TBI). The mechanism remains unknown. BCAAs are catabolized by neuron-specific cytosolic and astrocyte-specific mitochondrial branched-chain aminotransferases (BCATc, BCATm) to generate glutamate and branched-chain keto-acids (BCKAs) that are metabolized by the mitochondrial branched-chain keto-acid dehydrogenase (BCKD) whose activity is regulated by its phosphorylation state. BCKD phosphorylation by BCKD kinase (BCKDK) inactivates BCKD and cause neurocognitive dysfunction, whereas dephosphorylation by specific phosphatase restores BCKD activity. Real-time polymerase chain reaction showed rapidly and significantly decreased BCATc messenger RNA (mRNA) levels, but significantly increased BCATm mRNA level post-CCI (controlled cortical impact). BCKD and BCKDK mRNA decreased significantly immediately after CCI-induced TBI (CCI) in the rat. Phosphorylated BCKD proteins (pBCKD) increased significantly in the ipsilateral-CCI hemisphere. Immunohistochemistry revealed significantly increased pBCKD proteins in ipsilateral astrocytes post-CCI. BCKD protein expression is higher in primarily cultured cortical neurons than in astrocytes, whereas pBCKD protein level is higher in astrocytes than in cortical neurons. Transforming growth factor beta treatment (10 μg/mL for 48 h) significantly increased pBCKD protein expression in astrocytes, whereas glutamate treatment (25 μM for 24 h) significantly decreased pBCKD protein in neurons. Because increased pBCKD would lead to increased BCKA accumulation, BCKA-mediated astrocyte activation, cell death, and cognitive dysfunction as found in maple syrup urine disease; thus, TBI may potentially induce cognitive deficit through diverting BCAA from glutamate production in neurons to BCKA production in astrocytes through the pBCKD-dependent mechanism.
机译:创伤性脑损伤(TBI)后,认知功能障碍牵涉到不足的支链氨基酸(BCAAs)。该机制仍然未知。 BCAA被神经元特异性胞质和星形胶质细胞特异性线粒体支链氨基转移酶(BCATc,BCATm)分解代谢以生成谷氨酸盐和支链酮酸(BCKAs),并由线粒体支链酮酸脱氢酶(BCK)代谢),其活性受其磷酸化状态调节。 BCKD激酶(BCKDK)引起的BCKD磷酸化使BCKD失活并引起神经认知功能障碍,而特定磷酸酶的去磷酸化则恢复BCKD活性。实时聚合酶链反应显示快速显着降低BCATc信使RNA(mRNA)水平,但显着提高CCI后BCATm mRNA水平(可控制的皮层撞击)。 CCI诱导的大鼠TBI(CCI)后,BCKD和BCKDK mRNA显着下降。磷酸化的BCKD蛋白(pBCKD)在同侧CCI半球中显着增加。免疫组织化学显示,CCI后同侧星形胶质细胞中pBCKD蛋白显着增加。在主要培养的皮质神经元中,BCKD蛋白表达高于星形胶质细胞,而在星形胶质细胞中,pBCKD蛋白水平高于皮质神经元。转化生长因子β处理(10μg/ mL,持续48μh)可显着增加星形胶质细胞中pBCKD蛋白的表达,而谷氨酸处理(25μμM/ mL,持续24μh)可显着降低神经元中pBCKD的蛋白表达。因为增加的pBCKD会导致增加的BCKA积聚,BCKA介导的星形胶质细胞活化,细胞死亡和认知功能障碍,如在枫糖浆尿病中发现的那样;因此,TBI可能通过依赖于pBCKD的机制将BCAA从神经元中谷氨酸的产生转移到星形胶质细胞中BCKA的产生,从而潜在地引起认知缺陷。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号