首页> 外文期刊>Journal of Materials Engineering and Performance >An Artificial Neural Network Model to Predict the Bainite Plate Thickness of Nanostructured Bainitic Steels Using an Efficient Network-Learning Algorithm
【24h】

An Artificial Neural Network Model to Predict the Bainite Plate Thickness of Nanostructured Bainitic Steels Using an Efficient Network-Learning Algorithm

机译:一种人工神经网络模型,用高效网络学习算法预测纳米结构贝氏体钢的贝氏体板厚度

获取原文
获取原文并翻译 | 示例
           

摘要

Nanostructured bainitic steel has an extraordinary ultrahigh strength of about 2.0GPa along with good toughness of 30MPam(1/2). The finer thickness of plate20-80nm is largely responsible for achieving such a large hardness of 690-720HV. In this work, a multilayer perceptron-based artificial neural network (ANN) model has been developed to predict the thickness of bainite plate pertaining to nanostructured bainitic steels. The inputs of the ANN model are, namely, Gibbs free energy for bainitic transformation, austenite strength, transformation temperature for bainite and carbon concentration in the steel. The model prediction revealed that the bainite plate thickness critically depends on austenite strength and Gibbs free energy. From the neural prediction, it is concluded that formation of nanostructured bainitic steel is feasible only if sufficient austenite strength (above 165MPa) has been achieved. This can be accomplished with a minimum carbon content of 0.5wt.% in steel and transformation temperature below 300 degrees C. Higher driving force (Gibbs free energy) below -1800J/mol is another prerequisite condition of formation of nanostructured bainite steel. The network-learning architecture has been optimized using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to minimize the network training error within eight training cycles. The algorithm facilitates a faster convergence of network training and testing errors.
机译:纳米结构贝氏体钢具有非凡的超高强度,大约2.0gPa,韧性良好为30mpam(1/2)。板20-80nm的较好厚度主要是负责实现690-720hv的这种大硬度。在这项工作中,已经开发了一种基于多层的感知的人工神经网络(ANN)模型以预测纳米结构贝氏体钢的贝氏体板的厚度。 ANN模型的输入,即GIBBS自由能为贝氏体转化,奥氏体强度,贝氏体的转化温度和钢中的碳浓度。模型预测显示贝氏体板厚度尺寸尺寸依赖性取决于奥氏体强度和吉布斯自由能。从神经预测,得出结论,只有在实现了足够的奥氏体强度(165MPa以上)的情况下,纳米结构贝氏体钢的形成是可行的。这可以通过最低碳含量为0.5wt的碳含量为0.5wt。钢和转化温度低于300℃的温度低于-1800J / mol以下的驱动力(Gibbs自由能)是形成纳米结构贝氏体钢的另一个先决条件。通过Broyden-Fletcher-GoldFarb-Shanno(BFGS)算法进行了优化了网络学习架构,可在八个训练周期内最大限度地减少网络训练误差。该算法有助于更快的网络培训和测试错误的收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号