首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Emerging negative differential resistance effects and novel tunable electronic behaviors of the broken-gap KAgSe/SiC(2)van der Waals heterojunction
【24h】

Emerging negative differential resistance effects and novel tunable electronic behaviors of the broken-gap KAgSe/SiC(2)van der Waals heterojunction

机译:出现的负差分抵抗效应和新型可调电子行为的破损差距Kagse / SiC(2)范德瓦尔斯异质结

获取原文
获取原文并翻译 | 示例
           

摘要

KAgSe is a newly discovered two-dimensional (2D) layered material, which shows great performance in optical absorption and potential applications as a favorable optical electronic device. However, its band gap is independent of the layer numbers, which restricts its further application in the field of tunneling field effect transistor (TFET). To address this issue, by integrating 2D KAgSe with a substrate of 2D penta-SiC2, a 2D KAgSe/SiC(2)vertical van der Waals heterojunction (vdWH) is proposed to extend the application of 2D KAgSe, and its structural, electronic and quantum transport behaviors are systematically investigated by using the first-principles method. Firstly, the robust structural stability of this vdWH is verified by evaluating its formation energy, vibrational phonon spectrum and molecular dynamics at high temperature. Moreover, various new functionalities are found for this novel 2D vdWH, which displays a relatively unique type-III band alignment and implies favorable application in TFETs considering the band-to-band tunneling process. The ideal electronic features of the vdWH can also be modulated by various external parameters including in-plane strain, interfacial distance, and external electric field. Especially under increasing negative external electric field, phase transitions occur for the vdWH from type-III band alignment to type-II, and then type-I and finally Schottky contact accompanied by the decrease of charge transfer and the reversal of net electric field in the interfacial region. Furthermore, quantum transport properties are investigated for a 2D KAgSe/SiC(2)vdWH based two-probe nano-device, and a sizable negative differential resistance (NDR) effect is obtained. Interestingly, the NDR effect is mainly dominated by the bias related band alignments in both leads associated with the mismatch of the conducting channel in the leads and scattering region, which is fundamentally different from the mechanism of general TFETs reported in previous publications where the NDR effect is mainly induced by the energy renormalization of the center material. The complete new mechanism of NDR effects in KAgSe/SiC(2)vdWH may provide a new strategy for the experimental design of future TFETs. We believe that the fascinating 2D KAgSe/SiC(2)vdWH can not only extend the application range of 2D KAgSe, but also inspire intensive research studies on the engineering of multi-functional nanoelectronic devices in the near future.
机译:Kagse是一种新发现的二维(2D)分层材料,其在光学吸收和潜在应用中显示出具有良好光学电子设备的良好性能。然而,其带隙与层数无关,层数限制其在隧道场效应晶体管(TFET)领域的进一步应用。为了解决此问题,通过将2D kagse与2D Penta-SIC2的基板集成,提出了2D kagse / SiC(2)垂直范德瓦尔斯异质结(VDWH)以扩展2D kagse的应用,其结构,电子和结构通过使用第一原理方法系统地研究量子传输行为。首先,通过在高温下评估其形成能量,振动声子谱和分子动力学来验证该VDWH的鲁棒结构稳定性。此外,对于这种新的2D VDWH,发现了各种新功能,其显示了一个相对独特的III型带对准,并且考虑到带对频段隧道处理的TFET中涉及有利的应用。 VDWH的理想电子特征也可以通过各种外部参数调制,包括面内应变,界面距离和外部电场。特别是在增加负电场外部电场下,III型带对准的VDWH对II型的阶段转变,然后型号-I和最后肖特基触点伴随着电荷转移的减少和净电场的逆转界面区域。此外,研究了量子传输性能,用于基于2D kagse / SiC(2)基于两个探针纳米装置,并且获得了可大小的负差分电阻(NDR)效应。有趣的是,NDR效应主要由与引线和散射区域中的导线失配相关的引线中的偏置相关带对准,这与先前出版物中报告的一般TFET的机制基本不同主要由中心材料的能量重整引起。 KAGSE / SIC(2)VDWH中的NDR效应的完整新机制可以为未来TFET的实验设计提供一种新的策略。我们认为,迷人的2D kagse / sic(2)Vdwh不仅可以扩展2D kagse的应用范围,还可以在不久的将来激发关于多功能纳米电子器件的工程的密集研究。

著录项

  • 来源
  • 作者单位

    Shenzhen Univ Shenzhen Key Lab Adv Thin Films &

    Applicat Coll Phys &

    Optoelect Engn Shenzhen 518060 Peoples R China;

    Shandong Univ Sch Phys State Key Lab Crystal Mat Jinan 250100 Peoples R China;

    Shenzhen Univ Shenzhen Key Lab Adv Thin Films &

    Applicat Coll Phys &

    Optoelect Engn Shenzhen 518060 Peoples R China;

    Shenzhen Univ Shenzhen Key Lab Adv Thin Films &

    Applicat Coll Phys &

    Optoelect Engn Shenzhen 518060 Peoples R China;

    Shenzhen Univ Shenzhen Key Lab Adv Thin Films &

    Applicat Coll Phys &

    Optoelect Engn Shenzhen 518060 Peoples R China;

    Shenzhen Univ Shenzhen Key Lab Adv Thin Films &

    Applicat Coll Phys &

    Optoelect Engn Shenzhen 518060 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号