首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >A universal strategy to improve the mechanical stability of flexible organic thin film transistors Electronic supplementary information (ESI) available. See DOI: 10.1039/c9tc01373c
【24h】

A universal strategy to improve the mechanical stability of flexible organic thin film transistors Electronic supplementary information (ESI) available. See DOI: 10.1039/c9tc01373c

机译:一种提高柔性有机薄膜晶体管电子补充信息(ESI)的机械稳定性的普遍策略。 见DOI:10.1039 / C9TC01373C

获取原文
获取原文并翻译 | 示例
       

摘要

In flexible electronic systems, mechanical deformation is a key factor that impacts the mechanical stability of flexible devices. In this work, for the first time, a mathematical analysis model was introduced to precisely calculate the position of the bending axis (the strains are zero) in a flexible organic thin film transistor (OTFT) system, which is also broadly applicable for flexible electronic systems. Based on this mathematical analysis model, a universal method was proposed to precisely move the bending axis to different positions in a flexible OTFT by simply adjusting the thickness of the passivation layer. Moreover, the results firstly demonstrated that the flexible OTFT exhibited the best mechanical stability and electrical performance when the bending axis was located at the gate dielectric/semiconductor charge channel interface, as the charge transport was mainly at the charge channel interface, and moving the bending axis to the gate dielectric/semiconductor interface would minimize the impact of mechanical deformation on the charge transport. More importantly, this work definitely demonstrated the importance of the passivation layer, which could not only prevent the damage caused by water and oxygen in the air to flexible devices, but could also tune the position of the bending axis and improve the mechanical stability of flexible devices without sacrificing the electrical performance or increasing the complexity of the fabrication process. Furthermore, this method is also applicable to other flexible electronic systems and has great potential to fabricate flexible electronics with excellent mechanical properties and environmental durability.
机译:在灵活的电子系统中,机械变形是影响柔性器件的机械稳定性的关键因素。在这项工作中,首次引入了数学分析模型以精确地计算柔性有机薄膜晶体管(OTFT)系统中的弯曲轴(菌株为零),这也广泛适用于柔性电子系统。基于该数学分析模型,提出了一种通用方法,通过简单地调节钝化层的厚度,将弯曲轴精确地移动到柔性OTFT中的不同位置。此外,结果首先表明,当弯曲轴位于栅极电介质/半导体电荷通道接口处时,柔性OTFT表现出最佳的机械稳定性和电性能,因为电荷传输主要处于充电通道界面,并移动弯曲轴到栅极电介质/半导体界面将最小化机械变形对电荷传输的影响。更重要的是,这项工作绝对证明了钝化层的重要性,这不仅可以防止空气中的水和氧气造成的损坏到柔性装置,而且还可以调节弯曲轴的位置,提高柔性的机械稳定性。无需牺牲电性能或增加制造过程的复杂性的设备。此外,该方法也适用于其他柔性电子系统,具有较大的潜力,可制造具有优异的机械性能和环境耐久性的柔性电子产品。

著录项

  • 来源
  • 作者单位

    Fuzhou Univ Natl &

    Local United Engn Lab Flat Panel Display T Inst Optoelect Display Fuzhou 350002 Fujian Peoples R China;

    Fuzhou Univ Natl &

    Local United Engn Lab Flat Panel Display T Inst Optoelect Display Fuzhou 350002 Fujian Peoples R China;

    Fuzhou Univ Natl &

    Local United Engn Lab Flat Panel Display T Inst Optoelect Display Fuzhou 350002 Fujian Peoples R China;

    Fuzhou Univ Natl &

    Local United Engn Lab Flat Panel Display T Inst Optoelect Display Fuzhou 350002 Fujian Peoples R China;

    Fuzhou Univ Natl &

    Local United Engn Lab Flat Panel Display T Inst Optoelect Display Fuzhou 350002 Fujian Peoples R China;

    Fuzhou Univ Natl &

    Local United Engn Lab Flat Panel Display T Inst Optoelect Display Fuzhou 350002 Fujian Peoples R China;

    Fuzhou Univ Natl &

    Local United Engn Lab Flat Panel Display T Inst Optoelect Display Fuzhou 350002 Fujian Peoples R China;

    Fuzhou Univ Natl &

    Local United Engn Lab Flat Panel Display T Inst Optoelect Display Fuzhou 350002 Fujian Peoples R China;

    Fuzhou Univ Natl &

    Local United Engn Lab Flat Panel Display T Inst Optoelect Display Fuzhou 350002 Fujian Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号