首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >High efficiency and highly saturated red emitting inverted quantum dot devices (QLEDs): optimisation of their efficiencies with low temperature annealed sol-gel derived ZnO as the electron transporter and a novel high mobility hole transporter and thermal annealing of the devices
【24h】

High efficiency and highly saturated red emitting inverted quantum dot devices (QLEDs): optimisation of their efficiencies with low temperature annealed sol-gel derived ZnO as the electron transporter and a novel high mobility hole transporter and thermal annealing of the devices

机译:高效率和高度饱和的红色发射量子点(QLED):用低温退火溶胶 - 凝胶衍生ZnO作为电子传输器的优化优化它们的效率,以及器件的热退火和热退火

获取原文
获取原文并翻译 | 示例
       

摘要

Quantum dot light emitting diodes (QLEDs) are promising candidates for high efficiency and high colour gamut displays with saturated colours. This paper reports a peak current efficiency of 46 cd A(-1) and a peak power efficiency 42 lm W-1 for red QLEDs with CIE (x, y) of (0.695 and 0.305), which we believe to be the highest ever reported for a red QLED. Annealing QLED devices at 40 degrees C for 120 hours makes such a dramatic increase in the peak current efficiency by 207% (from 15 cd A(-1) to 46 cd A(-1)) and the power efficiency by 600% (from 6 lm W-1 to 42 lm W-1). This paper also addresses three major issues confronting the development of QLEDs: first, the nature of CdSe based QDs, whether a sulphur rich (CdSe (core)/CdS (shell)/ZnS (shell)) or selenium rich (CdSe (core)/ZnSe (shell)/ZnS (shell)) system gives higher efficiency; secondly, how to balance the charge injection from high electron mobility ZnO films by simply altering the annealing conditions rather than the complicated application of thin insulating interfacial layers (2-5 nm); and thirdly, improving the hole injection using high mobility hole transporters (electron blockers). In addition, this paper also investigates the effect of annealing the encapsulated devices (positive aging) on the device performance. The (CdSe (core)/CdS (shell)/ZnS (shell)) QD films dried at 80 degrees C have a hole mobility of 3.1 x 10(-7) cm(2) V-1 s(-1) and an electron mobility of 6.7 x 10(-8) cm(2) V-1 s(-1), whereas the corresponding values for (CdSe (core)/ZnSe (shell)/ZnS (shell)) are 2.0 x 10(-6) cm(2) V-1 s(-1) and 1.1 x 10(-6) cm(2) V-1 s(-1). The electron transport in all the QLEDs has been found to be space charge limited regardless of the QDs employed. Annealing sol-gel derived ZnO nanoparticles at 120 degrees C in a vacuum results in films (particle size 3-5 nm, crystallinity 60.7%) with an electron mobility of 3 x 10(-5) cm(2) V-1 s(-1), which is compatible with standard low mobility organic hole injectors and electron blockers to yield high efficiency devices. ZnO films annealed at 200 degrees C in air (crystallinity 90.2%, mobility 1.1 x 10(-4) cm(2) V-1 s(-1)) results in poorer efficiency for an identical device structure. The work function and band gap of the ZnO (vacuum annealed at 120 degrees C) films are -3.9 eV and 3.5 eV respectively. The corresponding values for the ZnO (annealed at 200 degrees C in air) films are -3.8 and -3.3 eV respectively. Despite these small differences, there is a significant impact on the device performance, which is attributed to the differences in the mobilities of the ZnO films and ZnO/QD interfacial effects. The (CdSe/ZnSe/ZnS) QDs give higher efficiencies (16 cd A(-1) and 10 lm W-1 at 1000 cd m(-2)) than the analogous (CdSe/CdS/ZnS) system (10 cd A(-1) and 5.8 lm W-1 at 1000 cd m(-2)). Upon annealing at 40 degrees C for 120 hours, the latter system gives enhanced efficiencies of 26 cd A(-1) and 12.5 lm W-1 at 1000 cd m(-2). High mobility, high LUMO hole transporters/electron blockers are essential for the production of high efficiency QLEDs with saturated colour CIE co-ordinates of (0.708, 0.292).
机译:量子点发光二极管(QLED)是具有饱和颜色饱和颜色的高效率和高色域显示的候选人。本文报告了46cd A(-1)的峰值电流效率,以及用于(0.695和0.305)的CIE(X,Y)的红色QLED的峰值功率效率42 LM W-1,我们认为是最高的报道了一个红QLED。 40摄氏度的退火QLED器件120小时使得峰值电流效率的显着增加将207%(从15cd a(-1)到46cd a(-1))和功率效率达到600%(来自6 LM W-1至42 LM W-1)。本文还涉及三大问题面临QLED的发展:第一,基于CDSE的性质,QDS,无论是富含硫(CDSE(核心)/ CDS(壳)/ ZNS(壳))还是富含(CDSE(CDSE) / znse(shell)/ zns(shell))系统提供更高的效率;其次,如何通过简单地改变退火条件而不是薄绝缘界面层(2-5nm)的复杂施加来平衡高电子迁移率ZnO膜的电荷注入;第三,使用高迁移孔输送器(电子阻挡剂)改善空穴注射。此外,本文还研究了退火封装器件(正老化)对器件性能的影响。 (CDSE(核心)/ Cds(壳)/ ZnS(壳))在80℃下干燥的QD膜的孔迁移率为3.1×10(-7)cm(2)V-1 s(-1)和一个电子迁移率为6.7×10(-8)cm(2)V-1 s(-1),而(CDSE(核心)/ znse(shell)/ zns(shell))的相应值为2.0 x 10( - 6)Cm(2)V-1s(-1)和1.1×10(-6)cm(2)V-1 s(-1)。无论采用的QD如何,都发现所有QLED中的电子传输是空间电荷有限的。退火溶胶 - 凝胶在120℃下衍生的ZnO纳米颗粒在真空中导致膜(粒径3-5nm,结晶度60.7%),电子迁移率为3×10( - 5)cm(2)V-1 s( -1),与标准低迁移率有机孔喷射器和电子阻挡剂兼容,以产生高效装置。 ZnO薄膜在空气中以200摄氏度退火(结晶度90.2%,迁移率1.1×10(-4)cm(2)V-1 s(-1))导致相同的器件结构的效率较差。 ZnO的功函数和ZnO(真空在120摄氏度退火)薄膜的隙分别为-3.9eV和3.5eV。 ZnO的相应值(在空气中为200摄氏度退火)薄膜分别为-3.8和-3.3eV。尽管存在这些小差异,但对器件性能产生了重大影响,这归因于ZnO薄膜和ZnO / QD界面效应的迁移率的差异。 (CDSE / ZnSe / ZnS)QDS比类似(CDSE / CDS / ZnS)系统(10 CD A)提供更高的效率(16cd a(-1)和10 lm w-1)(10℃)(10cd a (-1)和5.8 LM W-1,在1000cd m(-2)))。在40℃下退火120小时后,后一种体系在1000cdm(-2)下给出26cd A(-1)和12.5升W-1的增强效率。高迁移率,高卢比空穴运输/电子阻挡剂对于生产高效率QLED具有饱和彩色CIE坐标(0.708,0.292)的高效QLED至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号