首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Halogenation on benzo[1,2-b:4,5-b ']difuran polymers for solvent additive-free non-fullerene polymer solar cells with efficiency exceeding 11%
【24h】

Halogenation on benzo[1,2-b:4,5-b ']difuran polymers for solvent additive-free non-fullerene polymer solar cells with efficiency exceeding 11%

机译:苯并的卤化[1,2-B:4,5-B']脱硫聚合物用于溶剂添加剂的非富勒烯聚合物太阳能电池的效率超过11%

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, two novel two-dimensional (2D) benzo[1,2-b:4,5-b ']difuran (BDF)-based wide bandgap polymers were designed using a halogenation strategy by incorporating fluorine- and chlorine-substituted conjugated side chains, respectively. With the advantages of low-cost and environment-friendly furan units and halogen atoms, the BDF polymers PFTBDF-FBTA (F10) and PClTBDF-FBTA (F11) possessed lower-lying highest occupied molecular orbital (HOMO) energy levels with a large effect on their optical properties. In addition, the intermolecular interactions induced by F(Cl)MIDLINE HORIZONTAL ELLIPSISH(O) and/or F(Cl)MIDLINE HORIZONTAL ELLIPSISF(Cl) can also promote more preferred polymeric chain stacking behavior. In the application of non-fullerene polymer solar cells (NF-PSCs) with m-ITIC as the electron acceptor in the inverted device structure, the fluorinated F10-based NF-PSC exhibited a power conversion efficiency (PCE) of 10.5% with a higher open circuit voltage (V-oc) of 0.908 V, which is much higher than that of the non-halogenated counterpart. In the chlorinated polymer F11:m-ITIC-based device, a further higher V-oc of 0.921 V with enhanced current density was achieved, which results in a promising PCE of 11.37%, which is mainly attributed to the lower-lying HOMO and improved intermolecular stacking induced by chlorine. It is also noted that these performances were obtained without using any solvent additive or solvent annealing process, which is attractive to large area printing processing technology. These results demonstrate that halogenation engineering of BDF polymer is a very promising molecular design strategy for BDF polymers to reach the state-of-the-art photovoltaic performance, and these results also show that BDF is an efficient building block to construct highly efficient polymer donors for PSC applications.
机译:在这项工作中,使用卤化策略结合氟和氯取代,设计了两种新型二维(2D)苯并[1,2-B:4,5-B']差异(BDF)的宽带隙聚合物设计的共轭侧链。凭借低成本和环保呋喃单位和卤素原子的优点,BDF聚合物PFTBDF-FBTA(F10)和PCLTBDF-FBTA(F11)具有较低的最高占用的分子轨道(HOMO)能级,具有很大的效果在它们的光学性质上。另外,由F(CL)中线水平椭圆椭圆(O)和/或F(CL)中线水平椭圆形(CL)诱导的分子间相互作用也可以促进更优选的聚合物链堆叠行为。在倒置器件结构中用M-Itic作为电子受体的非富烯聚合物太阳能电池(NF-PSC)的应用,氟化F10的NF-PSC表现出10.5%的功率转换效率(PCE) 0.908 V的更高开路电压(V-OC),远高于非卤化对应物的电压。在氯化聚合物F11:基于M-ITIC基装置中,实现了具有增强电流密度的0.921V的进一步更高的V-OC,这导致有前途的PCE为11.37%,这主要归因于下躺着的HOMO和改善氯诱导的分子间堆叠。还应注意,在不使用任何溶剂添加剂或溶剂退火过程的情况下获得这些性能,这对于大面积印刷处理技术具有吸引力。这些结果表明,BDF聚合物的卤化工程是BDF聚合物的卤化工程是达到最先进的光伏性能的非常有希望的分子设计策略,这些结果还表明BDF是构建高效的高效聚合物供体的有效构建块对于PSC应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号