首页> 外文学位 >Morphological control in polymer solar cells using low-boiling-point solvent additives.
【24h】

Morphological control in polymer solar cells using low-boiling-point solvent additives.

机译:使用低沸点溶剂添加剂的聚合物太阳能电池的形态控制。

获取原文
获取原文并翻译 | 示例

摘要

In the global search for clean, renewable energy sources, organic photovoltaics (OPVs) have recently been given much attention. Popular modern-day OPVs are made from solution-processible, carbon-based polymers (e.g. the model poly(3-hexylthiophene) that are intimately blended with fullerene derivatives (e.g. [6,6]-phenyl-C71-butyric acid methyl ester) to form what is known as the dispersed bulk-heterojunction (BHJ). This BHJ architecture has produced some of the most efficient OPVs to date, with reports closing in on 10% power conversion efficiency. To push efficiencies further into double digits, many groups have identified the BHJ nanomorphology---that is, the phase separations and grain sizes within the polymer: fullerene composite---as a key aspect in need of control and improvement. As a result, many methods, including thermal annealing, slow-drying (solvent) annealing, vapor annealing, and solvent additives, have been developed and studied to promote BHJ self-organization.;Processing organic photovoltaic (OPV) blend solutions with high-boiling-point solvent additives has recently been used for morphological control in BHJ OPV cells. Here we show that even low-boiling-point solvents can be effective additives. When P3HT:PCBM OPV cells were processed with a low-boiling-point solvent tetrahydrafuran as an additive in parent solvent o-dichlorobenzene, charge extraction increased leading to fill factors as high as 69.5%, without low work-function cathodes, electrode buffer layers or thermal treatment. This was attributed to PCBM demixing from P3HT domains and better vertical phase separation, as indicated by photoluminescence lifetimes, hole mobilities, and shunt leakage currents. Dependence on solvent parameters and applicability beyond P3HT system was also investigated.
机译:在全球寻找清洁,可再生能源的过程中,有机光伏(OPV)最近受到了广泛关注。当今流行的OPV是由可溶液处理的碳基聚合物(例如,模型聚(3-己基噻吩)与富勒烯衍生物(例如[6,6]-苯基-C71-丁酸甲酯)紧密混合而成的形成所谓的分散体异质结(BHJ)这种BHJ架构已生产出一些迄今为止最高效的OPV,据报道功率转换效率为10%。为了将效率进一步提高到两位数,许多小组已经确定了BHJ纳米形态-即聚合物中的相分离和晶粒尺寸:富勒烯复合物-是需要控制和改进的关键方面,因此,许多方法,包括热退火,已经开发并研究了干燥(溶剂)退火,蒸气退火和溶剂添加剂,以促进BHJ自组织。;最近,将具有高沸点溶剂添加剂的有机光伏(OPV)共混溶液加工用于形态学研究BHJ OPV细胞中的所有对照。在这里我们表明,即使是低沸点溶剂也可以是有效的添加剂。当用低沸点溶剂四氢呋喃作为母溶剂邻二氯苯中的添加剂处理P3HT:PCBM OPV电池时,电荷提取增加,导致填充因子高达69.5%,而没有低功函数的阴极,电极缓冲层或热处理。这归因于PCBM从P3HT域中解混和更好的垂直相分离,如光致发光寿命,空穴迁移率和分流泄漏电流所示。还研究了对溶剂参数的依赖以及在P3HT系统以外的适用性。

著录项

  • 作者

    Mahadevapuram, Rakesh C.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号