首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Kinetic model for photoluminescence quenching by selective excitation of D/A blends: implications for charge separation in fullerene and non-fullerene organic solar cells
【24h】

Kinetic model for photoluminescence quenching by selective excitation of D/A blends: implications for charge separation in fullerene and non-fullerene organic solar cells

机译:通过D / A混合物选择性激发的光致发光淬火动力学模型:富勒烯和非富勒烯有机太阳能电池电荷分离的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The details of the charge separation kinetics at organic donor/acceptor (D/A) heterojunctions are still poorly understood. Particularly in the field of organic solar cells (OSCs), it is not yet clear why systems with low energetic offsets (driving force, Delta G) between D and A can efficiently dissociate excitons generated in either phase of the heterojunction. This phenomenon has become ubiquitous after the popularization of non-fullerene acceptors (NFAs) to replace the fullerene acceptors (FAs) in efficient OSCs. Here we modeled the kinetics of charge separation at the D/A heterojunctions. The time-dependent concentration of singlet excitons (S-1) and charge transfer states (CT) at the D/A interface is quantified by a system of coupled differential equations with transition rates obtained from Marcus/Hush theory. We derived analytical expressions for the exciton quenching produced by selective excitation of the donor (Q(D)) or the acceptor (Q(A)) under the steady-state approximation. We then use this model and quantum chemistry calculations to anticipate the basic features of charge separation in the interfaces of PC71BM and ITIC (FA and NFA) with the PTB7-Th copolymer (D). The model predicts Q(D) = Q(A) = 100% for the system with ITIC and Q(D) = 100% for the system with PC71BM. Yet Q(A) 100% for selective excitation of PC71BM. This effect is basically produced by the high binding energy of S-1 excitons in fullerene. These properties of exciton quenching are in agreement with photoluminescence measurements performed in PTB7-Th/PC71BM (ITIC) blends. With the help of the parameters calculated for these systems and assuming a constant energy for the local S-1 state, we found that the magnitude of Delta G determines different mechanisms that limit the exciton dissociation. Singlet exciton recombination is dominant over other recombination channels when Delta G is low. This effect is due to a fast back charge transfer from the CT state to recreate the S-1 state population. Nevertheless, direct recombination from the CT state is the dominant channel when Delta G is high. Our analysis may inspire new optimizations strategies to achieve even higher OSC efficiencies.
机译:有机供体/受体(D / A)异质结的电荷分离动力学的细节仍然很差。特别是在有机太阳能电池(OSCS)的领域中,尚不清楚为什么D和A之间的具有低能量偏移(驱动力,DELTA G)的系统可以有效地解散异质结的任一相产生的激子。在富富勒烯受体(NFAs)普及后,这种现象变得无处不在,以便在有效的OSC中取代富勒烯受体(FAS)。在这里,我们将电荷分离的动力学建模在D / A杂交中建模。 D / A接口的单线子激子(S-1)和电荷转移状态(CT)的时间依赖性浓度由耦合微分方程的系统量化,其具有从Marcus / Hush理论获得的过渡速率的过渡速率。我们通过在稳态近似下选择性激发供体(Q(d))或受体(q(a))产生的激发器猝灭的分析表达。然后,我们使用该模型和量子化学计算,以预测PTB7-TH共聚物(D)的PC71BM和ITIC(FA和NFA)接口中电荷分离的基本特征。模型预测Q(d)= q(a)=系统的q(a)= 100%,具有q(d)= 100%的系统,用于PC71bm的系统。然而Q(a) pc71bm选择性激励100%。这种效果基本上由富勒烯S-1激子的高结合能产生。 Exciton淬火的这些性质与PTB7-/ PC71BM(ITIC)共混物中的光致发光测量一致。借助于这些系统计算的参数并假设局部S-1状态的恒定能量,我们发现Delta G的大小确定了限制激子解离的不同机制。当Delta g低时,单线突发子复合在其他重组通道上占主导地位。这种效果是由于来自CT状态的快速返回电荷转移来重建S-1状态人群。然而,当Delta G高时,来自CT状态的直接重组是主导渠道。我们的分析可能会激发新的优化策略,以实现更高的OSC效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号