首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >'Hot-node' controlled facile synthesis of 3D rare earth micro-networks with symmetry deviation induced high luminescence
【24h】

'Hot-node' controlled facile synthesis of 3D rare earth micro-networks with symmetry deviation induced high luminescence

机译:“热节点”控制体面合成3D稀土微网络具有对称偏差诱导高发发光

获取原文
获取原文并翻译 | 示例
       

摘要

Controlled self-assembly is a powerful strategy for building mesoscopic superstructures. However, the construction of high luminescence, millimeter-sized and spatially well-defined 3D rare earth (RE) material assemblies is a challenging objective. Apart from ligand sensitized luminescence of RE(3+)ions, improving their luminescence efficiency by changing the symmetry of the coordination environment of RE(3+)ions is a promising approach. In this work, we propose a facile "hot-node" growth strategy for the preparation of millimeter-sized high luminescence 3D RE micro-networks (RE-MNs) using citric acid (CA) as a ligand with weak absorption and mismatched energy levels of RE(3+)ions. A unique assembly mechanism for RE-MNs is revealed, mainly including RE3+/CA coordination, high temperature-promoted disordered aggregation, "hot-node" formation, and the "hot-node" controlled production of MNs. Surprisingly, the luminescence efficiency of RE-MN assemblies is similar to 10(2)times stronger than that of RE3+/CA complex precursors. Based on detailed photoluminescence (PL) spectra analysis, the significantly enhanced PL is directly attributed to the symmetry deviation induced transition (SDIT) effect. The formation of RE-MN assemblies results in the decrease of symmetry of the coordination environment of RE(3+)ions and leads to the deviation of RE(3+)from the center of inversion, which directly changes the originally Laporte-forbidden f-f transition to an allowed transition. Such facile and gram-scale synthesis technology enables the formation of high luminescence RE-MN assemblies with narrow bandwidth emission with promise for application in light emitting diodes (LEDs).
机译:受控的自我组装是建筑脑镜上层建筑的强大策略。然而,高发光,毫米尺寸和空间明确定义的3D稀土(RE)材料组件的构建是一个具有挑战性的目标。除了Re(3+)离子的配体敏化发光之外,通过改变Re(3+)离子的配位环境的对称性来提高其发光效率是一种有希望的方法。在这项工作中,我们建议使用柠檬酸(CA)作为配体的毫米大小的高发光3D RE微网络(RE-MNS)作为配体的毫米大小的高发光3D RE微网络(RE-MNS)的增长策略。 Re(3+)离子。揭示了一种独特的RE-MNS的组装机制,主要包括RE3 + / CA协调,高温促进的无序聚集,“热节点”形成,以及MNS的“热节点”控制生产。令人惊讶的是,RE-Mn组件的发光效率与RE3 + / CA复合前体的发光效率相似至10(2)倍。基于详细的光致发光(PL)光谱分析,显着增强的PL直接归因于对称偏差引起的转变(SDIT)效应。 Re-Mn组件的形成导致Re(3+)离子的协调环境对称性降低,并导致Re(3+)从反转中心偏差,直接改变最初的Laporte-Forbidden FF过渡到允许的转换。这种容易和革兰级合成技术使得能够形成具有窄带宽发射的高发光RE-MN组件,其承诺在发光二极管(LED)中应用。

著录项

  • 来源
  • 作者单位

    East China Univ Sci &

    Technol Feringa Nobel Prize Scientist Joint Res Ctr Frontiers Sci Ctr Materiobiol &

    Dynam Chem Sch Chem &

    Mol Engn Key Lab Adv Mat Shanghai 200237 Peoples R China;

    East China Univ Sci &

    Technol Feringa Nobel Prize Scientist Joint Res Ctr Frontiers Sci Ctr Materiobiol &

    Dynam Chem Sch Chem &

    Mol Engn Key Lab Adv Mat Shanghai 200237 Peoples R China;

    East China Univ Sci &

    Technol Feringa Nobel Prize Scientist Joint Res Ctr Frontiers Sci Ctr Materiobiol &

    Dynam Chem Sch Chem &

    Mol Engn Key Lab Adv Mat Shanghai 200237 Peoples R China;

    East China Univ Sci &

    Technol Feringa Nobel Prize Scientist Joint Res Ctr Frontiers Sci Ctr Materiobiol &

    Dynam Chem Sch Chem &

    Mol Engn Key Lab Adv Mat Shanghai 200237 Peoples R China;

    East China Univ Sci &

    Technol Feringa Nobel Prize Scientist Joint Res Ctr Frontiers Sci Ctr Materiobiol &

    Dynam Chem Sch Chem &

    Mol Engn Key Lab Adv Mat Shanghai 200237 Peoples R China;

    East China Univ Sci &

    Technol Feringa Nobel Prize Scientist Joint Res Ctr Frontiers Sci Ctr Materiobiol &

    Dynam Chem Sch Chem &

    Mol Engn Key Lab Adv Mat Shanghai 200237 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号