首页> 外文期刊>Journal of neural transmission >The catecholaldehyde hypothesis: where MAO fits in
【24h】

The catecholaldehyde hypothesis: where MAO fits in

机译:儿茶酚醛假设:毛泽东融入的地方

获取原文
获取原文并翻译 | 示例
       

摘要

Monoamine oxidase (MAO) plays a central role in the metabolism of the neurotransmitters dopamine, norepinephrine, and serotonin. This brief review focuses on 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is the immediate product of MAO acting on cytoplasmic dopamine. DOPAL is toxic; however, normally DOPAL is converted via aldehyde dehydrogenase (ALDH) to 3,4-dihydroxyphenylacetic acid (DOPAC), which rapidly exits the neurons. In addition to vesicular uptake of dopamine via the vesicular monoamine transporter (VMAT), the two-enzyme sequence of MAO and ALDH keeps cytoplasmic dopamine levels low. Dopamine oxidizes readily to form toxic products that could threaten neuronal homeostasis. The catecholaldehyde hypothesis posits that diseases featuring catecholaminergic neurodegeneration result from harmful interactions between DOPAL and the protein alpha-synuclein, a major component of Lewy bodies in diseases such as Parkinson disease, dementia with Lewy bodies, and pure autonomic failure. DOPAL potently oligomerizes alpha-synuclein, and alpha-synuclein oligomers impede vesicular functions, shifting the fate of cytoplasmic dopamine toward MAO-catalyzed formation of DOPAL—a vicious cycle. When MAO deaminates dopamine to form DOPAL, hydrogen peroxide is generated; and DOPAL, hydrogen peroxide, and divalent metal cations react to form hydroxyl radicals, which peroxidate lipid membranes. Lipid peroxidation products in turn inhibit ALDH, causing DOPAL to accumulate—another vicious cycle. MAO inhibition decreases DOPAL formation but concurrently increases the spontaneous oxidation of dopamine, potentially trading off one form of toxicity for another. These considerations rationalize a neuroprotection strategy based on concurrent treatment with an MAO inhibitor and an anti-oxidant.
机译:单胺氧化酶(MAO)在神经递质多巴胺,去甲肾上腺素和血清素的代谢中起着核心作用。本简要综述专注于3,4-二羟基苯基丙醛(多普尔),这是毛泽东型细胞质多巴胺的直接产物。多普尔有毒;然而,通常多普拉通过醛脱氢酶(ALDH)转化为3,4-二羟基苯基乙酸(DOPAC),其迅速出现神经元。除了通过脉冲单胺转运蛋白(VMAT)进行多巴胺的腐败摄取,MAO和ALDH的双酶序列使细胞质多巴胺水平低。多巴胺容易氧化,形成可能威胁神经元稳态的毒性产品。儿茶酚醛假设假设疾病,其特征在于多普尔和蛋白质α-突触核蛋白之间的有害相互作用,其疾病疾病的大量组成部分,如帕金森病,痴呆症,具有纯粹的自主失败。多普尔易于杀死α-突触核蛋白,α-突触核蛋白寡聚体阻碍了囊泡功能,将细胞质多巴胺的命运转移到茂催化的多普尔 - 一种恶性循环的形成。当Mao脱胺形成多巴胺以形成多普尔时,产生过氧化氢;和多淘锰,过氧化氢和二价金属阳离子反应形成羟基自由基,其过氧化脂质膜。脂质过氧化产物反过来抑制ALDH,导致掺量积累 - 另一个恶性循环。毛抑制减少了多普尔的形成,但同时增加了多巴胺的自发氧化,潜在地交易另一个形式的毒性。这些考虑基于用毛抑制剂和抗氧化剂的同时治疗合理化神经保护策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号