首页> 外文期刊>Journal of Nanomechanics and Micromechanics >Energetic Size Effect Law at the Microscopic Scale: Application to Progressive-Load Scratch Testing
【24h】

Energetic Size Effect Law at the Microscopic Scale: Application to Progressive-Load Scratch Testing

机译:精力充沛的大小效应法在微观尺度下:应用于渐进式划痕测试

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A scratch test consists in pulling a diamond stylus across the surface of a weaker material; it is widely applied in several fields of science and engineering, including polymer damage, metal wear, thin-film quality control, and strength of rocks. Recently, there has been an upsurge of interest in the fracture analysis of materials via scratch testing. In this study, the energetic size effect law (SEL) is applied at the microscopic scale for progressive-load scratch tests using a Rockwell C diamond probe. First, we employ dimensional analysis to connect the scratch force to the projected load-bearing area and to the perimeter for an axisymmetric scratch probe. In a second step, based on geometrical considerations, we approximate the real scratch probe geometry with a cone of equivalent half-apex angle, θ_(eq). Then, we express the dependence of the nominal strength, σ_N, on the structural size, Λ, via a scaling relationship. The theoretical developments are later implemented in an experimental procedure so as to assess the solid fracture toughness and characteristic length directly from micro-scratch test measurements. The microscopic SEL is first tested on homogeneous materials, such as paraffin wax, polycarbonate, polyacetal, and aluminum. An excellent agreement is found between the theoretical predictions and measurements from conventional fracture testing methods, such as three-point bending tests on single-edge notched specimens. The theoretico-experimental framework is then extended to an extensive characterization campaign including conventional portland cement paste, natural shale, and organic-rich shale. For more than 10 different materials, the nominal strength exhibits a distinct scaling in 1/(1 + Λ/Λ_0)~(1/2), as predicted by the SEL.
机译:划痕测试包括在较弱的材料表面上拉动钻石触控笔;它广泛应用于几个科学和工程领域,包括聚合物损坏,金属磨损,薄膜质量控制和岩石的强度。最近,通过划伤测试对材料的断裂分析有兴趣的兴趣。在这项研究中,使用罗克韦尔C金刚石探针在渐进式负荷划痕试验中施加精力尺寸效应法(SEL)。首先,我们使用尺寸分析以将划痕力连接到投影承载区域和轴对称划痕探头的周边。在第二步中,基于几何考虑,我们将真实的划痕探针几何形状近似于等效半顶点角度θ_(eq)的锥体。然后,我们通过缩放关系表达标称强度,σ_n,λ,结构大小λ的依赖性。后来在实验过程中实施理论发育,以便直接从微划痕测试测量评估固体断裂韧性和特征长度。首先在均匀材料上测试微观SEL,例如石蜡,聚碳酸酯,聚缩醛和铝。在传统骨折测试方法的理论预测和测量之间发现了一个很好的协议,例如单边缘缺口样本上的三点弯曲试验。然后将理论实验框架扩展到广泛的特征活动,包括传统的波特兰水泥膏,天然页岩和有机丰富的页岩。对于10多种不同的材料,标称强度在1 /(1 +λ/λ_0)〜(1/2)中表现出明显的缩放,如sel所预测的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号