...
首页> 外文期刊>Journal of Mechanical Science and Technology >Signal attenuation simulation of acoustic telemetry in directional drilling
【24h】

Signal attenuation simulation of acoustic telemetry in directional drilling

机译:方向钻探声遥测的信号衰减模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Acoustic telemetry is preferred to conventional mud pulse telemetry because of its faster data transmission rate. However, acoustic telemetry requires a repeater for signal amplification because of the large signal attenuation that depends on the depth of drilling, which makes the system complicated and expensive. To improve communication performance by overcoming signal attenuation, developing a simulator capable of simulating the signal is necessary. However, the existing research models are limited to certain types of wave equation models that do not reflect the signal attenuation. In this study, the viscous dissipation term is added to the existing model, assuming that viscous friction caused by the relative movement between the mud and the drill string vibrating by acoustic waves is the main factor causing acoustic energy dissipation. A transient numerical model has been developed and tuned to simulate the attenuation rate reported in Drumheller's experiment on depth-dependent signal attenuation. The model shows that mud viscous flow is a major contribution to acoustic energy dissipation. The model developed in this study can be applied as a virtual simulator to develop various communication algorithms, as it can simulate signal attenuations at various drilling sites.
机译:由于数据传输速率更快,声学遥测是传统的泥浆脉冲遥测。然而,声学遥测需要一种用于信号放大的转发器,因为信号衰减的大量取决于钻孔深度,这使得系统复杂且昂贵。通过克服信号衰减来提高通信性能,开发能够模拟信号的模拟器是必要的。然而,现有的研究模型仅限于不反映信号衰减的某些类型的波浪方程模型。在该研究中,粘性耗散项被添加到现有的模型中,假设由泥浆振动的泥浆和钻柱之间的相对运动引起的粘性摩擦是导致声能量耗散的主要因素。已经开发和调整了瞬态数值模型,以模拟Drumheller在深度依赖性信号衰减中报告的衰减速率。该模型表明,泥浆粘性流动是对声学能量耗散的主要贡献。本研究开发的模型可以应用于虚拟模拟器以开发各种通信算法,因为它可以模拟各种钻井场所的信号衰减。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号