...
首页> 外文期刊>Journal of loss prevention in the process industries >Consequence prediction for dust explosions involving interconnected vessels using computational fluid dynamics modeling
【24h】

Consequence prediction for dust explosions involving interconnected vessels using computational fluid dynamics modeling

机译:使用计算流体动力学建模涉及互连血管的粉尘爆炸的后果预测

获取原文
获取原文并翻译 | 示例

摘要

Combustible dust explosions continue to present a significant threat toward operating personnel and pneumatic conveyance equipment in a wide variety of processing industries. Following ignition of suspended fuel within a primary enclosure volume, propagation of flame and pressure fronts toward upstream or downstream interconnected enclosures can result in devastating secondary explosions if not impeded through an appropriate isolation mechanism. In such occurrences, an accelerated flame front may result in flame jet ignition within the secondary vessel, greatly increasing the overall explosion severity. Unlike an isolated deflagration event with quantifiable reduced pressures (vent sizing according to NFPA 68 guidance), oscillation of pressure between primary and secondary process vessels leads to uncertain overpressure effects. Dependent on details of the application such as relative enclosure volumes, relief area, fuel type, suspended concentration, duct size, and duct length, the maximum system pressure in both interconnected vessels can be unpredictable. This study proposes the use of FLame ACceleration Simulator (FLACS) computational fluid dynamics (CFD) modeling to provide reliable consequence predictions for specific case scenarios of dust deflagrations involving interconnected equipment. Required minimum supplement to the originally calculated relief area (A(v)) was determined through iterative simulation, allowing for reduced explosion pressures (P-red) to be maintained below theoretical enclosure design strengths (P-es).
机译:可燃粉尘爆炸继续在各种加工行业中对操作人员和气动输送设备带来重大威胁。在初级外壳体积内点火悬浮燃料,火焰和压力前沿向上游或下游互连的外壳的传播可能导致如果没有通过适当的隔离机制阻碍的次级爆炸。在这种情况下,加速的火焰前线可能导致二次容器内的火焰喷射点火,大大增加了整体爆炸性严重程度。与具有可量化的压力的隔离惯例事件(根据NFPA 68引导的通风尺寸)不同,初级和二级过程容器之间的压力振荡导致不确定的过压作用。根据应用的细节,如相对外壳体积,浮雕区域,燃料型,悬浮浓度,管道尺寸和管道长度,互联容器中的最大系统压力可能是不可预测的。本研究提出了使用火焰加速模拟器(FLACS)计算流体动力学(CFD)建模,以提供涉及互联设备的灰尘脱模的特定情况的可靠后果预测。通过迭代模拟确定所需的最小补充剂(A(V)),允许将爆炸压力(P-RED)降低,以保持低于理论外壳设计强度(P-ES)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号