...
首页> 外文期刊>Biotechnology Progress >Hydrogel-Perfluorocarbon Composite Scaffold Promotes Oxygen Transport to Immobilized Cells
【24h】

Hydrogel-Perfluorocarbon Composite Scaffold Promotes Oxygen Transport to Immobilized Cells

机译:水凝胶-全氟化碳复合支架促进氧气运输到固定的细胞。

获取原文
获取原文并翻译 | 示例

摘要

Cell encapsulation provides cells a three-dimensional structure to mimic physiological conditions and improve cell signaling, proliferation, and tissue organization as compared to monolayer culture. Encapsulation devices often encounter poor mass transport, especially for oxygen, where critical dissolved levels must be met to ensure both cell survival and functionality. To enhance oxygen transport, we utilized perfluorocarbon (PFC) oxygen vectors, specifically perfluorooctyl bromide (PFOB) immobilized in an alginate matrix. Metabolic activity of HepG2 liver cells encapsulated in 1% alginate/10% PFOB composite system was 47—104% higher than alginate systems lacking PFOB. A cubic model was developed to understand the oxygen transport mechanism in the alginate/PFOB composite system. The theoretical flux enhancement in alginate systems containing 10% PFOB was 18% higher than in alginate-only systems. Oxygen uptake rates (OURs) of HepG2 cells were enhanced with 10% PFOB addition under both 20% and 5% O2 boundary conditions, by 8% and 15%, respectively. Model predictions were qualitatively and quantitatively verified with direct experimental OUR measurements using both a perfusion reactor and oxygen sensing plate, demonstrating a greater OUR enhancement under physiological O2 boundary conditions (i.e., 5% O2). Inclusion of PFCs in an encapsulation matrix is a useful strategy for overcoming oxygen limitations and ensuring cell viability and functionality both for large devices (>1 mm) and over extended time periods. Although our results specifically indicate positive enhancements in metabolic activity using the model HepG2 liver system encapsulated in alginate, PFCs could be useful for improving/stabilizing oxygen supply in a wide range of cell types and hydrogels.
机译:与单层培养相比,细胞封装为细胞提供了三维结构,可模拟生理条件并改善细胞信号传导,增殖和组织组织。封装设备经常遇到较差的质量传输,尤其是对于氧气而言,必须满足临界溶解水平才能确保细胞存活和功能。为了增强氧气的运输,我们利用了全氟化碳(PFC)氧气载体,特别是固定在藻酸盐基质中的全氟辛基溴(PFOB)。封装在1%藻酸盐/ 10%PFOB复合系统中的HepG2肝细胞的代谢活性比缺乏PFOB的藻酸盐系统高47-104%。开发了立方模型以了解藻酸盐/ PFOB复合系统中的氧气传输机理。含10%PFOB的藻酸盐系统的理论通量增强比仅藻酸盐的系统高18%。在20%和5%O2边界条件下,添加10%PFOB可提高HepG2细胞的摄氧率(OURs),分别提高8%和15%。使用灌注反应器和氧气感应板通过直接实验性OUR测量对定性模型进行了定性和定量验证,表明在生理O2边界条件(即5%O2)下OUR增强更大。在封装矩阵中包含PFC是一种有用的策略,可用于克服氧气限制并确保大型设备(> 1 mm)和延长时间范围内的电池活力和功能。尽管我们的研究结果具体表明,使用封装在藻酸盐中的HepG2模型肝脏系统可以积极增强代谢活性,但PFC可用于改善/稳定各种细胞类型和水凝胶中的氧气供应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号