首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >Utilizing the Heliophysics/Geospace System Observatory to Understand Particle Injections: Their Scale Sizes and Propagation Directions
【24h】

Utilizing the Heliophysics/Geospace System Observatory to Understand Particle Injections: Their Scale Sizes and Propagation Directions

机译:利用HeliophySics / GeoSpace系统天文台理解粒子注射:它们的规模尺寸和传播方向

获取原文
获取原文并翻译 | 示例
           

摘要

The injection region's formation, scale size, and propagation direction have been debated throughout the years, with new questions arising with increased plasma sheet observations by missions like Cluster and THEMIS. How do temporally and spatially small-scale injections relate to the larger injections historically observed at geosynchronous orbit? How to account for opposing propagation directions-earthward, tailward, and azimuthal-observed by different studies? To address these questions,we used a combination of multisatellite and ground-based observations to knit together a cohesive story explaining injection formation, propagation, and differing spatial scales and timescales. We used a case study to put statistics into context. First, fast earthward flows with embedded small-scale dipolarizing flux bundles transport both magnetic flux and energetic particles earthward, resulting in minutes-long injection signatures. Next, a large-scale injection propagates azimuthally and poleward/tailward, observed in situ as enhanced flux and on the ground in the riometer signal. The large-scale dipolarization propagates in a similar direction and speed as the large-scale electron injection. We suggest small-scale injections result from earthward-propagating, small-scale dipolarizing flux bundles, which rapidly contribute to the large-scale dipolarization. We suggest the large-scale dipolarization is the source of the large-scale electron injection region, such that as dipolarization expands, so does the injection. The >90-keV ion flux increased and decreased with the plasma flow, which died at the satellites as global dipolarization engulfed them. We suggest the ion injection region at these energies in the plasma sheet is better organized by the plasma flow.
机译:在整个年内,注射区域的形成,规模尺寸和传播方向已经争论,具有新的问题,这些问题是群集和主题等特派团的等离子体表观察。时间和空间小规模的注射如何涉及在地球同步轨道历史上观察到的较大的注射?如何通过不同研究的反对传播方向 - 地值,尾,和方位角观察到不同的研究?为了解决这些问题,我们使用多卫星和地面观测的组合来编织一个粘性故事,解释注射形成,传播和不同的空间尺度和时间尺度。我们使用案例研究将统计数据放入上下文中。首先,具有嵌入的小型双极化磁通束的快速地值流量将磁通量和精力充沛的粒子变土,导致注射次数长时间的注射签。接下来,大规模喷射传播方位角和极向/尾,原位观察到增强的磁通量和在压力计信号中的地面上。大规模的双极化以与大尺寸电子注入相似的方向和速度传播。我们建议从地形传播,小规模的小极化助焊剂捆绑引起的小规模注射,这迅速有助于大规模的双极化。我们建议大规模的双极化是大型电子注入区域的来源,使得随着双极化的扩展,注射也是如此。通过等离子体流量增加和90-keV离子通量,随着全球双极化吞噬它们,在卫星处死亡。我们建议通过等离子体流动组织等离子体片中这些能量的离子注射区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号