首页> 外文期刊>Journal of Fluids Engineering: Transactions of the ASME >Hydrodynamic Cavitation Downstream a Micropillar Entrained Inside a Microchannel-A Parametric Study
【24h】

Hydrodynamic Cavitation Downstream a Micropillar Entrained Inside a Microchannel-A Parametric Study

机译:在微通道内夹带的微量储存的流体动力空化下游 - 一个参数研究

获取原文
获取原文并翻译 | 示例
           

摘要

Hydrodynamic cavitation downstream a range of micropillar geometries entrenched in a microchannel were studied experimentally. Pressurized helium gas at the inlet tank and vacuum pressure at the outlet propelled distilled water through the device and trigger cavitation. The entire process from cavitation inception to the development of elongated attached cavity was recorded. Three modes of cavitation inception were observed and key parameters of cavitation processes, such as cavity length and angle of attachment, were compared among various micropillar geometries. Cavitation downstream of a triangular micropillar was found to have a distinct inception mode with relatively high cavitation inception numbers. After reaching its full elongated form, it prevailed through a larger system pressures and possessed the longest attached cavity. Cavity angle of attachments was predominantly related to the shape of the micropillar. Micropillars with sharp vertex led to lower cavity attachment angles close to the flow separation point, while circular micropillars resulted in higher angles. Twin circular micropillars have a unique cavitation pattern that was affected by vortex shedding. Fast Fourier transformation (FFT) analysis of the cavity image intensity revealed transverse cavity shedding frequencies in various geometries and provided an estimation for vortex shedding frequencies.
机译:在实验中研究了在微通道中根深蒂固的微池几何形状的水动力空化。入口罐的加压氦气和出口的真空压力通过装置推进蒸馏水并触发空化。记录了从空化剥离到细长附着腔开发的整个过程。观察到有三种空化初始模式,并且在各种微米几何形状中比较了空化过程的关键参数,例如空化过程,例如腔长和附着角度。发现三角形微毛珠下游的空化具有具有相对高的空化初始数字的不同的初始模式。在达到完整的细长形式之后,它通过更大的系统压力普及并具有最长的附着腔。附着的腔角主要与微米的形状相关。具有尖锐顶点的微量瓶子导致靠近流动分离点的腔附件角度较低,而圆形微粒导致更高的角度。双圆形微米具有独特的空化图案,受涡旋脱落的影响。腔体图像强度的快速傅里叶变换(FFT)分析揭示了各种几何形状中的横向腔脱落频率,并为涡流脱落频率提供了估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号