首页> 外文期刊>Journal of Fluids Engineering: Transactions of the ASME >Radial Pressure Wave Behavior in Transient Laminar Pipe Flows Under Different Flow Perturbations
【24h】

Radial Pressure Wave Behavior in Transient Laminar Pipe Flows Under Different Flow Perturbations

机译:不同流动扰动下瞬态层压管流量的径向压力波动

获取原文
获取原文并翻译 | 示例
           

摘要

The study of transient pressure waves in both low- and high-frequency domains has become a new research area to provide potentially high-resolution pipe fault detection methods. In previous research works, radial pressure waves were evidently observed after stopping the laminar pipe flows by valve closures, but the generation mechanism and components of these radial pressure waves are unclear. This paper intends to clarify this phenomenon. To this end, this study first addresses the inefficiencies of the current numerical scheme for the full two-dimensional (full-2D) water hammer model. The modified efficient full-2D model is then implemented into a practical reservoir-pipeline-valve (RPV) system, which is validated by the well-established analytical solutions. The generation mechanism and components of the radial pressure waves, caused by different flow perturbations from valve operations, in transient laminar flows are investigated systematically using this efficient full-2D model. The results indicate that nonuniform changes in the initial velocity profile form pressure gradients along the pipe radius. The existence of these radial pressure gradients is the driving force of the formation of radial flux and radial pressure waves. In addition, high radial modes can be excited, and the frequency of flow perturbations by valve oscillation can redistribute the energy entrapped in each high radial mode.
机译:低频域中的瞬态压力波的研究已成为提供潜在的高分辨率管道故障检测方法的新研究区。在以前的研究作品中,在通过阀门闭合停止层状管流动之后明显地观察到径向压力波,但是这些径向压力波的产生机构和部件尚不清楚。本文打算澄清这种现象。为此,本研究首先解决了全二维(全2D)水锤模型的当前数值方案的低效率。然后将改进的高效全2D模型实施到实用的水库 - 管道阀(RPV)系统中,由良好的分析解决方案验证。通过该高效的全2D模型系统地研究了由阀门操作的不同流动扰动引起的径向压力波的产生机制和部件。结果表明初始速度曲线沿管半径的压力梯度的不均匀变化。这些径向压力梯度的存在是径向通量和径向压力波的形成的驱动力。另外,可以振兴高径向模式,并且通过阀振荡的流动扰动的频率可以重新分布在每个高径向模式下捕获的能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号