首页> 外文期刊>Biotechnology and Bioengineering >A High Gas Fraction, Reduced Power, Syngas Bioprocessing Method Demonstrated With a Clostridium ljungdahlii OTA1 Paper Biocomposite
【24h】

A High Gas Fraction, Reduced Power, Syngas Bioprocessing Method Demonstrated With a Clostridium ljungdahlii OTA1 Paper Biocomposite

机译:劳氏梭状芽孢杆菌OTA1纸生物复合材料展示的一种高气体分数,降低功率的合成气生物处理方法

获取原文
获取原文并翻译 | 示例
           

摘要

We propose a novel approach to continuous bioprocessing of gases. A miniaturized, coated-paper strip, high gas fraction, biocomposite absorber has been developed using slowly shaken horizontal anaerobic tubes. Concentrated Clostridium ljungdahlii OTA1 was used as a model system. These gas absorbers demonstrate elevated CO mass transfer with low power input, reduced liquid requirements, elevated substrate consumption, and increased product secretion compared to shaken suspended cells. Concentrated OTA1 cell paste was coated by extrusion onto chromatography paper. The immobilized system shows high, constant reactivity immediately upon rehydration. Cell adhesion was by adsorption to the cellulose fibers; visualized by SEM. The C. ljungdahlii OTA1 coated paper mounted above the liquid level absorbs CO and H-2 from a model syngas secreting acetate with minimal ethanol. At 100 rpm shaking speed (7.7 Wm(-3)) the optimal cell loading is 6.5 g(DCW) m(-2) to maintain high CO absorbing reactivity without the cells coming off of the paper into the liquid phase. Reducing the medium volume from 10 mL to 4 mL (15% of tube volume) did not decrease CO reactivity. The reduced liquid volume increased secreted product concentration by 80%. The specific CO consumption by paper biocomposites was higher at all shaking frequencies <100 rpm than suspended cells under identical incubation conditions. At 25 rpm the biocomposite outperforms suspended cells for CO absorption by 2.5-fold, with an estimated power reduction of 97% over the power input at 100 rpm. The estimated minimum k(L)a for miniaturized biocomposite gas-absorbers is similar to 100 h(-1), 10 to 104 less power input than other syngas fermentation systems reported in the literature at similar kLa. Specific consumption rates in a biocomposite were similar to 14 mmol g(DCW)(-1) h(-1). This work intensified CO absorption and reactivity by 14-fold to 94 mmol CO m(-2) h(-1) over previous C. ljungdahlii OTA1 work by our group. Specific acetate production rates were 23mM h(-1) or 46 mmol m(-2) h(-1). The specific rates and apparent kLa scaled linearly with biocomposite coating area. (C) 2016 Wiley Periodicals, Inc.
机译:我们提出了一种连续进行气体生物处理的新方法。使用缓慢摇动的水平厌氧管开发了一种小型的涂布纸带,高气体分数的生物复合吸收器。浓氏梭状芽孢杆菌OTA1被用作模型系统。与摇动的悬浮细胞相比,这些气体吸收器显示出在低功率输入下提高了CO传质,降低了液体需求,提高了底物消耗并增加了产品分泌。通过挤出将浓缩的OTA1细胞糊剂涂覆在色谱纸上。复水后,固定化系统立即显示出高而恒定的反应性。细胞粘附是通过吸附到纤维素纤维上来实现的。通过SEM可视化。安装在液面上方的C. ljungdahlii OTA1涂布纸从模型合成气中吸收CO和H-2,该模型合成气以最少的乙醇分泌乙酸盐。在100 rpm的摇动速度(7.7 Wm(-3))下,最佳的细胞负载为6.5 g(DCW)m(-2),以保持高的CO吸收反应性,而细胞不会从纸上脱落到液相中。将培养基体积从10 mL减少到4 mL(占试管体积的15%)不会降低CO反应性。减少的液体体积使分泌产物浓度增加了80%。在相同的温育条件下,纸质生物复合物在低于100 rpm的所有振动频率下消耗的特定CO均比悬浮细胞高。在25 rpm时,该生物复合材料的悬浮液吸收CO的性能优于悬浮细胞2.5倍,与100 rpm时输入的功率相比,功率降低了97%。小型化的生物复合气体吸收器的估计最小k(L)a类似于100 h(-1),比文献中类似kLa报道的其他合成气发酵系统的输入功率少10至104。在生物复合物中的特定消耗速率类似于14 mmol g(DCW)(-1)h(-1)。这项工作比我们小组先前的C. ljungdahlii OTA1工作将CO吸收和反应性提高了14倍,达到94 mmol CO m(-2)h(-1)。特定的乙酸盐生产率为23mM h(-1)或46 mmol m(-2)h(-1)。比速率和表观kLa随生物复合涂层面积线性变化。 (C)2016威利期刊公司

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号