首页> 外文期刊>Frontiers in Microbiology >A Narrow pH Range Supports Butanol, Hexanol, and Octanol Production from Syngas in a Continuous Co-culture of Clostridium ljungdahlii and Clostridium kluyveri with In-Line Product Extraction
【24h】

A Narrow pH Range Supports Butanol, Hexanol, and Octanol Production from Syngas in a Continuous Co-culture of Clostridium ljungdahlii and Clostridium kluyveri with In-Line Product Extraction

机译:窄pH范围支持连续生产斜体金丝藻和天然克鲁维氏菌的共培养中在线生产的合成气生产丁醇,己醇和辛醇

获取原文
       

摘要

Carboxydotrophic bacteria (CTB) have received attention due to their ability to synthesize commodity chemicals from producer gas and synthesis gas (syngas). CTB have an important advantage of a high product selectivity compared to chemical catalysts. However, the product spectrum of wild-type CTB is narrow. Our objective was to investigate whether a strategy of combining two wild-type bacterial strains into a single, continuously fed bioprocessing step would be promising to broaden the product spectrum. Here, we have operated a syngas-fermentation process with Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction through gas stripping and product condensing within the syngas recirculation line. The main products from C. ljungdahlii fermentation at a pH of 6.0 were ethanol and acetate at net volumetric production rates of 65.5 and 431 mmol C·L~(?1)·d~(?1), respectively. An estimated 2/3 of total ethanol produced was utilized by C. kluyveri to chain elongate with the reverse β-oxidation pathway, resulting in n -butyrate and n -caproate at net rates of 129 and 70 mmol C·L~(?1)·d~(?1), respectively. C. ljungdahlii likely reduced the produced carboxylates to their corresponding alcohols with the reductive power from syngas. This resulted in the longer-chain alcohols n -butanol, n -hexanol, and n -octanol at net volumetric production rates of 39.2, 31.7, and 0.045 mmol C·L~(?1)·d~(?1), respectively. The continuous production of the longer-chain alcohols occurred only within a narrow pH spectrum of 5.7–6.4 due to the pH discrepancy between the two strains. Regardless whether other wild-type strains could overcome this pH discrepancy, the specificity (mol carbon in product per mol carbon in all other liquid products) for each longer-chain alcohol may never be high in a single bioprocessing step. This, because two bioprocesses compete for intermediates (i.e., carboxylates): (1) chain elongation; and (2) biological reduction. This innate competition resulted in a mixture of n -butanol and n -hexanol with traces of n -octanol.
机译:碳营养细菌(CTB)由于能够从生产气和合成气(合成气)合成商品化学品而受到关注。与化学催化剂相比,CTB具有高产品选择性的重要优势。但是,野生型CTB的产物谱很窄。我们的目标是研究将两个野生型细菌菌株合并为一个连续进食的生物处理步骤的策略是否有望扩大产品范围。在这里,我们使用了梭菌梭状芽胞杆菌和克鲁维梭菌进行了合成气发酵工艺,并通过气提和产物气在合成气再循环管线内的冷凝进行了在线提取。 pH为6.0的荣格氏梭菌发酵的主要产物为乙醇和乙酸盐,净体积产率分别为65.5和431 mmol C·L〜(?1)·d〜(?1)。克鲁维梭菌利用估计的总乙醇产量的2/3通过反向β-氧化途径进行链延长,从而得到正丁酸和正己酸,净率为129和70 mmol C·L〜(?1 )·d〜(?1)。 C. ljungdahlii可能利用合成气的还原力将生成的羧酸盐还原为相应的醇。这导致长链醇正丁醇,正己醇和正辛醇的净体积生产率分别为39.2、31.7和0.045 mmol C·L〜(?1)·d〜(?1)。 。由于两个菌株之间的pH差异,长链醇的连续生产仅在5.7–6.4的窄pH谱内发生。不管其他野生型菌株是否能够克服这种pH差异,每种长链醇的特异性(每个产品中的每摩尔碳中的产品中的碳)在单个生物处理步骤中都不会很高。这是因为两个生物过程竞争中间体(即羧酸盐):(1)链延长; (2)生物还原。这种先天的竞争导致了正丁醇和正己醇与痕量正辛醇的混合物。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号