首页> 外文期刊>Journal of Applied Meteorology and Climatology >Dynamically Downscaled Climate Simulations of the Indian Monsoon in the Instrumental Era: Physics Parameterization Impacts and Precipitation Extremes
【24h】

Dynamically Downscaled Climate Simulations of the Indian Monsoon in the Instrumental Era: Physics Parameterization Impacts and Precipitation Extremes

机译:在仪器时代的印度季风的动态较次较低的气候模拟:物理参数化影响和降水极端

获取原文
获取原文并翻译 | 示例
           

摘要

The complex orography of South Asia, including both the Himalayas and the Tibetan Plateau, renders the regional climate complex. How this climate, especially the monsoon circulations, will respond to the global warming process is important given the large population of the region. In a first step toward a contribution to the understanding of the expected impacts, a series of dynamically downscaled instrumental-era climate simulations for the Indian subcontinent are described and will serve as a basis for comparison against global warming simulations. Global simulations based upon the Community Earth System Model (CESM) are employed to drive a dynamical downscaling pipeline in which the Weather Research and Forecasting (WRF) Model is employed as regional climate model, in a nested configuration with two domains at 30- and 10-km resolution, respectively. The entire ensemble was integrated for 15 years (1980-94), with the global model representing a complete integration from the onset of Northern Hemisphere industrialization. Compared to CESM, WRF significantly improves the representation of orographic precipitation. Precipitation extremes are also characterized using extreme value analysis. To investigate the sensitivity of the South Asian summer monsoon simulation to different parameterization schemes, a small physics ensemble is employed. The Noah multiphysics (Noah-MP) land surface scheme reduces the summer warm bias compared to the Noah land surface scheme. Compared with the Kain-Fritsch cumulus scheme, the Grell-3 scheme produces an increased moisture bias at the first western rain barrier, whereas the Tiedtke scheme produces less precipitation over the subcontinent than observed. Otherwise the improvement of fit to the observations derived from applying the downscaling methodology is highly significant.
机译:南亚的复杂性爱,包括喜马拉雅和藏高原,包括区域气候复杂。鉴于该地区的大人口,这种气候如何,尤其是季风循环将对全球变暖过程作出反应,这是重要的。在对对预期影响的理解贡献的第一步中,描述了一系列用于印度次大陆的动态较低的工具 - 时代气候模拟,并将作为对全球变暖模拟比较的基础。基于社区地球系统模型(CESM)的全局模拟用于驱动动态较低的管道管线,其中天气研究和预测(WRF)模型被用作区域气候模型,以嵌套配置,有两个域30-10个域-km分辨率。整个集合被融合了15年(1980-94),全球模型代表了北半球工业化开始的完整集成。与CESM相比,WRF显着提高了地形降水的表示。降低极端的特征也使用极值分析来表征。为了调查南亚夏季季风模拟对不同参数化方案的敏感性,采用了一个小物理合奏。与诺亚陆地方案相比,诺亚多发性(Noah-MP)陆地面积降低了夏季温暖偏差。与Kain-Fritce Cumulus方案相比,GREL-3方案在第一个西雨屏障中产生了增加的水分偏压,而Tiedtke方案在次大肿的沉淀下比观察到的较少降水。否则,拟合施加到施加缩小方法的观察的改善非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号