...
首页> 外文期刊>Journal of Dynamic Systems, Measurement, and Control >Adaptive Discrete Second-Order Sliding Mode Control With Application to Nonlinear Automotive Systems
【24h】

Adaptive Discrete Second-Order Sliding Mode Control With Application to Nonlinear Automotive Systems

机译:具有应用于非线性汽车系统的自适应离散二阶滑动模式控制

获取原文
获取原文并翻译 | 示例
           

摘要

Sliding mode control (SMC) is a robust and computationally efficient model-based controller design technique for highly nonlinear systems, in the presence of model and external uncertainties. However, the implementation of the conventional continuous-time SMC on digital computers is limited, due to the imprecisions caused by data sampling and quantization, and the chattering phenomena, which results in high-frequency oscillations. One effective solution to minimize the effects of data sampling and quantization imprecisions is the use of higher-order sliding modes. To this end, in this paper, a new formulation of an adaptive second-order discrete sliding mode controller (DSMC) is presented for a general class of multi-input multi-output (MIMO) uncertain nonlinear systems. Based on a Lyapunov stability argument and by invoking the new invariance principle, not only the asymptotic stability of the controller is guaranteed but also the adaptation law is derived to remove the uncertainties within the nonlinear plant dynamics. The proposed adaptive tracking controller is designed and tested in real time for a highly nonlinear control problem in spark ignition (SI) combustion engine during transient operating conditions. The simulation and real-time processor-in-the-loop (PIL) test results show that the second-order single-input single-output (SISO) DSMC can improve the tracking performances up to 90%, compared to a first-order SISO DSMC under sampling and quantization imprecisions, in the presence of modeling uncertainties. Moreover, it is observed that by converting the engine SISO controllers to a MIMO structure, the overall controller performance can be enhanced by 25%, compared to the SISO second-order DSMC, because of the dynamics coupling consideration within the MIMO DSMC formulation.
机译:滑模控制(SMC)是一种坚固且计算的高效模型的基于模型的控制器设计技术,用于高度非线性系统,在模型和外部不确定性的存在下。然而,由于数据采样和量化引起的不精确和抖动现象导致高频振荡导致的不精确,传统连续时间SMC的实现是有限的。一种有效解决数据采样和量化不精确的影响的一种有效解决方案是使用高阶滑动模式。为此,本文介绍了一种新的自适应二阶离散滑模控制器(DSMC)的新配方,用于一般类多输入多输出(MIMO)不确定非线性系统。基于Lyapunov稳定性论证并通过调用新的不变性原理,不仅保证了控制器的渐近稳定性,而且得到了适应法,以消除非线性植物动态的不确定性。所提出的自适应跟踪控制器是实时设计和测试的,用于在瞬态操作条件下的火花点火(Si)内燃机中的高度非线性控制问题。仿真和实时处理器 - 环路(PIL)测试结果表明,与一阶相比,二阶单输入单输出(SISO)DSMC可以提高跟踪性能,高达90% Siso DSMC在采样和量化不精确的情况下,存在建模不确定性。此外,通过将发动机Siso控制器转换为MIMO结构,与MIMO DSMC配方中的动力学耦合考虑相比,总控制器性能可以增强25%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号