...
首页> 外文期刊>Journal of Controlled Release: Official Journal of the Controlled Release Society >Optical barcoding of PLGA for multispectral analysis of nanoparticle fate in vivo
【24h】

Optical barcoding of PLGA for multispectral analysis of nanoparticle fate in vivo

机译:PLGA的光学条形码用于纳米粒子命运的多光谱分析在体内>斜体>

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Understanding of the mechanisms by which systemically administered nanoparticles achieve delivery across biological barriers remains incomplete, due in part to the challenge of tracking nanoparticle fate in the body. Here, we develop a new approach for “barcoding” nanoparticles composed of poly(lactic-co-glycolic acid) (PLGA) with bright, spectrally defined quantum dots (QDs) to enable direct, fluorescent detection of nanoparticle fate with subcellular resolution. We show that QD labeling does not affect major biophysical properties of nanoparticles or their interaction with cells and tissues. Live cell imaging enabled simultaneous visualization of the interaction of control and targeted nanoparticles with bEnd.3 cells in a flow chamber, providing direct evidence that surface modification of nanoparticles with the cell-penetrating peptide TAT increases their biophysical association with cell surfaces over very short time periods under convective current. We next developed this technique for quantitative biodistribution analysis in vivo. These studies demonstrate that nanoparticle surface modification with the cell penetrating peptide TAT facilitates brain-specific delivery that is restricted to brain vasculature. Although nanoparticle entry into the healthy brain parenchyma is minimal, with no evidence for movement of nanoparticles across the blood-brain barrier (BBB), we observed that nanoparticles are able to enter to the central nervous system (CNS) through regions of altered BBB permeability – for example, into circumventricular organs in the brain or leaky vasculature of late-stage intracranial tumors. In sum
机译:<![cdata [ 抽象 了解系统管理的纳米粒子在生物屏障中实现交付的机制仍然是不完整的,部分是由于挑战所致的不完整。在体内跟踪纳米粒子命运。在这里,我们开发了一种新的“条形码”纳米颗粒,其与聚(乳酸二乙醇酸)(PLGA)组成,具有明亮的光谱限定的量子点(QDS),以实现具有亚细胞分辨率的纳米颗粒命运的直接,荧光检测。我们表明QD标记不影响纳米颗粒的主要生物物理性质或其与细胞和组织的相互作用。活细胞成像使对照和靶向纳米颗粒的相互作用同时可视化流动室中的弯曲纳米细胞,提供直接证据,即具有细胞穿透肽TAT的纳米颗粒的表面改性将它们的生物物理与细胞表面上的生物物质结合在很短的时间内增加在对流电流下的时期。接下来,我们开发了这种用于定量生物分布分析的技术在体内。这些研究表明,具有细胞穿透肽TAT的纳米粒子表面改性有助于脑血管系统的脑特异性递送。虽然纳米粒子进入健康的脑医学是最小的,但没有证据表明纳米颗粒穿过血脑屏障(BBB),我们观察到纳米颗粒能够通过改变BBB渗透性的区域进入中枢神经系统(CNS) - 例如,进入脑内或泄漏的后期颅内肿瘤的脉冲器官。总共

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号