...
首页> 外文期刊>Journal of Computer-Aided Molecular Design >Structural explanation for the tunable substrate specificity of an E-coli nucleoside hydrolase: insights from molecular dynamics simulations
【24h】

Structural explanation for the tunable substrate specificity of an E-coli nucleoside hydrolase: insights from molecular dynamics simulations

机译:E-COLI核苷水解酶的可调谐衬底特异性的结构解释:分子动力学模拟的见解

获取原文
获取原文并翻译 | 示例
           

摘要

Parasitic protozoa rely on nucleoside hydrolases that play key roles in the purine salvage pathway by catalyzing the hydrolytic cleavage of the N-glycosidic bond that connects nucleobases to ribose sugars. Cytidine-uridine nucleoside hydrolase (CU-NH) is generally specific toward pyrimidine nucleosides; however, previous work has shown that replacing two active site residues with Tyr, specifically the Thr223Tyr and Gln227Tyr mutations, allows CU-NH to process inosine. The current study uses molecular dynamics (MD) simulations to gain atomic-level insight into the activity of wild-type and mutant E. coli CU-NH toward inosine. By examining systems that differ in the identity and protonation states of active site catalytic residues, key enzyme-substrate interactions that dictate the substrate specificity of CU-NH are identified. Regardless of the wild-type or mutant CU-NH considered, our calculations suggest that inosine binding is facilitated by interactions of the ribose moiety with active site residues and Ca2+, and pi-interactions between two His residues (His82 and His239) and the nucleobase. However, the lack of observed activity toward inosine for wild-type CU-NH is explained by no residue being correctly aligned to stabilize the departing nucleobase. In contrast, a hydrogen-bonding network between hypoxanthine and a newly identified general acid (Asp15) is present when the two Tyr mutations are engineered into the active site. Investigation of the single CU-NH mutants reveals that this hydrogen-bonding network is only maintained when both Tyr mutations are present due to a pi-interaction between the residues. These results rationalize previous experiments that show the single Tyr mutants are unable to efficiently hydrolyze inosine and explain how the Tyr residues work synergistically in the double mutant to stabilize the nucleobase leaving group during hydrolysis. Overall, our simulations provide a structural explanation for the substrate specificity of nucleos
机译:寄生原生动物依赖于核苷水解酶,其通过催化将核碱基与核糖糖连接的N-糖苷键的水解裂解在嘌呤救生途径中起关键作用。胞嘧啶 - 尿素核苷水解酶(Cu-NH)通常对嘧啶核苷的特异性;然而,先前的工作表明,用TYR,特别是THR223TY和GLN227TA突变替换两个活性位点残留物,允许CU-NH加工肌苷。目前的研究采用分子动力学(MD)模拟来获得原子水平洞察偏离敌人的野生型和突变体大肠杆菌Cu-NH的活性。通过检查在活性位点催化残基的身份和质子化状态下不同的系统,鉴定了对Cu-NH的底物特异性决定的关键酶底物相互作用。无论考虑的野生型或突变体Cu-NH如何,我们的计算表明,通过将核糖部分与活性位点残基的相互作用和Ca2 +的相互作用,以及两种残留物(HIS82和HIS239)和核碱基之间的PI-相互作用,促进了肌苷结合。 。然而,不正确地对准野生型Cu-NH缺乏对野生型Cu-NH的杀虫素的活性以稳定脱离的核碱基。相反,当将两个Tyr突变工程到活性位点时,存在次黄嘌呤和新鉴定的一般酸(ASP15)之间的氢键网络。单个Cu-NH突变体的研究表明,仅当由于残留物之间的PI-相互作用而存在Tyr突变时,才维持该氢键网络。这些结果使先前的实验合理化,所述实验显示单个Tyr突变体无法有效地水解肌苷,并解释Tyr残基如何在双突变体中协同作用,以稳定在水解期间离开基团的核碱基。总体而言,我们的模拟为核的底物特异性提供了结构解释

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号