首页> 外文期刊>Journal of Computational Chemistry: Organic, Inorganic, Physical, Biological >Is the choice of a standard zeroth-order hamiltonian in CASPT2 ansatz optimal in calculations of excitation energies in protonated and unprotonated schiff bases of retinal?
【24h】

Is the choice of a standard zeroth-order hamiltonian in CASPT2 ansatz optimal in calculations of excitation energies in protonated and unprotonated schiff bases of retinal?

机译:是在Casper2 Ansatz中选择一个标准的Zeroth哈密尼亚,在质子化和非普遍的视网膜的兴趣基地的励磁能量计算中的选择

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

To account for systematic error of CASPT2 method empirical modification of the zeroth-order Hamiltonian with Ionization Potential-Electron Affinity (IPEA) shift was introduced. The optimized IPEA value (0.25 a.u.), called standard IPEA (S-IPEA), was recommended but due to its unsatisfactory performance in multiple metallic and organic compounds it has been questioned lately as a general parameter working properly for all molecules under CASPT2 study. As we are interested in Schiff bases of retinal, an important question emerging from this conflict of choice, to use or not to use S-IPEA, is whether the introduction of the modified zeroth-order Hamiltonian into CASPT2 ansatz does really improve their energetics. To achieve this goal, we assessed an impact of the IPEA shift value, in a range of 0-0.35 a.u., on vertical excitation energies to low-lying singlet states of two protonated (RPSBs) and two unprotonated (RSBs) Schiff bases of retinal for which experimental data in gas phase are available. In addition, an effect of geometry, basis set, and active space on computed VEEs is also reported. We find, that for these systems, the choice of S-IPEA significantly overestimates both S0S1 and S0S2 energies and the best theoretical estimate, in reference to the experimental data, is provided with either unmodified zeroth-order Hamiltonian or small value of the IPEA shift in a range of 0.05-0.15 a.u., depending on active space and basis set size, equilibrium geometry, and character of the excited state. (c) 2018 Wiley Periodicals, Inc.
机译:为了解释CASPT2方法的系统误差,引入了具有电离电离电离电相亲和力(IPEA)偏移的零级哈密顿的经验修改。建议优化的IPEA值(0.25A.U.)(0.25A.U.),称为标准IPEA(S-IPEA),但由于其在多种金属和有机化合物中的表现不令人满意,最新是作为CASPT2研究下所有分子正常工作的一般参数。正如我们对视网膜的Schiff基地感兴趣的那样,从这种选择冲突中出现的一个重要问题,使用或不使用S-IPEA,是将改进的Zeroth Ramiltonian引入Caspt2 Ansatz确实改善了他们的能量学。为了实现这一目标,我们评估了IPEA换档值,在0-0.35 AU的范围内的影响,在垂直励磁能量到两个质子化(RPSB)的低位单态状态和两种未促进的(RSBS)Schiff的视网膜有哪些气相实验数据可用。此外,还报道了几何形状,基础集和活动空间对计算的VEE上的影响。我们发现,对于这些系统,S-IPEA的选择显着高估了S0S1和S0S2能量,以及参考实验数据的最佳理论估计,提供了未修饰的零级哈密顿人或IPEA Shift的小价值。在0.05-0.15 AU的范围内,根据有效空间和基础设定尺寸,平衡几何形状和兴奋状态的特征。 (c)2018 Wiley期刊,Inc。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号