首页> 外文期刊>Journal of CO2 Utilization >An experimental study of accelerated mineral carbonation of industrial waste red gypsum for CO2 sequestration
【24h】

An experimental study of accelerated mineral carbonation of industrial waste red gypsum for CO2 sequestration

机译:CO2封存工业废红石膏加速矿物质碳化的实验研究

获取原文
获取原文并翻译 | 示例
       

摘要

This study provides a novel approach to sequester carbon dioxide (CO2) using industrial waste red gypsum (RG) in an accelerated mineral carbonation process. In this study, RG samples and products were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), and transmission electron microscope (TEM). The XRD analysis of RG revealed that two main constitutions of RG are gypsum (CaSO4 center dot 2H(2)O) and hematite (Fe2O3). From XRF analysis, RG samples consisted of calcium oxide (CaO), sulfur trioxide (SO3), and ferric oxide (Fe2O3) as major components and titanium dioxide (TiO2), manganese oxide (MnO), and europium oxide (Eu2O3) as minor components. The accelerated mineral carbonation of RG was first performed using different concentrations of sulfuric acid (H2SO4) from 0.5 M to 2 M to extract the calcium ions from the RG. Then, the mineral carbonation process was performed within an Autoclave mini reactor by preparing an aqueous solution containing RG, CO2, and 5 wt% 0.1 M to 1.4 M mono-ethanolamine (MEA). The results showed that using 1.4 M MEA could absorb the highest amount of CO2 to precipitate the calcite. The significant advantages of using MEA were related to the further absorption of CO2 than 2 M H2SO4 in the slurry and the lower consumption of energy to precipitate the calcite. The findings presented in this study shed new light on precipitating carbonate minerals like calcite from industrial wastes rich in calcium as well as ones rich in iron, barium, and magnesium.
机译:该研究提供了一种使用加速矿物碳化过程中的工业废物红石膏(RG)螯合二氧化碳(CO2)的新方法。在本研究中,RG样品和产品的特征在于X射线衍射(XRD),X射线荧光(XRF),傅里叶变换红外(FTIR),热重分析(TGA),现场发射扫描电子显微镜(FESEM),以及透射电子显微镜(TEM)。 RG的XRD分析显示RG的两个主要构成体是石膏(CasO4中心点2H(2)O)和赤铁矿(Fe2O3)。从XRF分析中,RG样品由氧化钙(CaO),三氧化硫(SO 3)和氧化铁(Fe2O3)作为主要成分和二氧化钛(TiO 2),氧化锰(MNO)和氧化铕(Eu2O3)组成为次要的成分。首先使用0.5μm至2μm的不同浓度的硫酸(H 2 SO 4)进行RG的加速矿物质碳酸化以从RG提取钙离子。然后,通过制备含有RG,CO 2和5wt%0.1M至1.4M单乙醇胺(MEA)的水溶液,通过制备水溶液在高压釜迷你反应器内进行矿物碳化过程。结果表明,使用1.4M MEA可以吸收最高量的CO 2,以沉淀方解石。使用MEA的显着优点与在浆料中进一步吸收二氧化碳比2M H 2 SO 4和能量较低的能量消耗,以沉淀方解石。本研究中提出的调查结果揭示了新的光线,促使碳酸盐矿物如富含钙的工业废物,以及富含铁,钡和镁的工业废物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号