【24h】

Factorizing regular graphs

机译:定期图形

获取原文
获取原文并翻译 | 示例
           

摘要

Every 9-regular graph (possibly with multiple edges) with odd edge-connectivity > 5 can be edge-decomposed into three 3-factors. If Tutte's 3-flow conjecture is true, it also holds for all 9-regular graphs with odd edge-connectivity 5, but not with odd edge-connectivity 3. It holds for all planar 2-edge-connected 9-regular graphs, an equivalent version of the 4-color theorem for planar graphs. We address the more general question: If G is an r-regular graph, and r = kq where k, q are natural numbers > 1, can G be edge-decomposed into k q-factors? If q is even, then the decomposition exists trivially. If k, q are both odd, then we prove that the decomposition exists if G has odd edge-connectivity (size of smallest odd edge-cut) at least 3k - 2, which is satisfied if the odd edge-connectivity is at least r - 2. If q is odd and k is even, then we must require that G has an even number of vertices just to guarantee that C has a q-factor. If we want a decomposition into q-factors, then we also need the condition that, for any partition of the vertex set of G into two odd parts, there must be at least k edges between the parts. We prove that the edge-decomposition into q-factors is always possible if G has an even number of vertices and the edge-connectivity of G is at least 2k(2) + k. (C) 2019 Elsevier Inc. All rights reserved.
机译:每个具有奇数边缘连接> 5的每9常规图(可能有多个边缘)可以是边缘 - 分解为三个3因素。如果Tutte的3流套猜想为真,它也适用于具有奇数边缘连接5的所有9常规图形,但不具有奇数边缘连接3.它适用于所有平面2边缘连接的9常规图形,平面图的4色定理的等效版本。我们解决了更一般的问题:如果g是r-常规图,并且r = kq,其中k,q是自然数> 1,可以g被边缘分解为k q因子?如果Q是偶数,则逐渐存在分解。如果k,q都奇数是奇数,那么我们证明了分解,如果g具有奇数的边缘连接(最小奇数边缘的大小),则至少3k-2,如果奇数边缘连接至少为r,则满足。 - 如果Q为奇数并且k即使是奇数,那么我们必须要求G具有偶数顶点,以保证C具有Q因子。如果我们希望分解成Q因素,那么我们还需要条件,对于将顶点的任何分区的G到两个奇数部分,部件之间必须至少存在k个边缘。我们证明,如果G具有偶数的顶点并且G的边缘连接,则始终可以将边缘分解成Q因子始终可以是至少2k(2)+ k。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号