首页> 外文期刊>Journal of chemical information and modeling >Reaction-Based Enumeration, Active Learning, and Free Energy Calculations To Rapidly Explore Synthetically Tractable Chemical Space and Optimize Potency of Cyclin-Dependent Kinase 2 Inhibitors
【24h】

Reaction-Based Enumeration, Active Learning, and Free Energy Calculations To Rapidly Explore Synthetically Tractable Chemical Space and Optimize Potency of Cyclin-Dependent Kinase 2 Inhibitors

机译:基于反应的枚举,主动学习和自由能量计算,以迅速探索合成易易易易易易腐蚀的化学空间,并优化细胞周期蛋白依赖性激酶2抑制剂的效力

获取原文
获取原文并翻译 | 示例
           

摘要

The hit-to-lead and lead optimization processes usually involve the design, synthesis, and profiling of thousands of analogs prior to clinical candidate nomination. A hit finding campaign may begin with a virtual screen that explores millions of compounds, if not more. However, this scale of computational profiling is not frequently performed in the hit-to-lead or lead optimization phases of drug discovery. This is likely due to the lack of appropriate computational tools to generate synthetically tractable lead-like compounds in silico, and a lack of computational methods to accurately profile compounds prospectively on a large scale. Recent advances in computational power and methods provide the ability to profile much larger libraries of ligands than previously possible. Herein, we report a new computational technique, referred to as "PathFinder", that uses retrosynthetic analysis followed by combinatorial synthesis to generate novel compounds in synthetically accessible chemical space. In this work, the integration of PathFinder-driven compound generation, cloud-based FEP simulations, and active learning are used to rapidly optimize R-groups, and generate new cores for inhibitors of cyclin-dependent kinase 2 (CDK2). Using this approach, we explored >300 000 ideas, performed >5000 FEP simulations, and identified >100 ligands with a predicted IC50 < 100 nM, including four unique cores. To our knowledge, this is the largest set of FEP calculations disclosed in the literature to date. The rapid turnaround time, and scale of chemical exploration, suggests that this is a useful approach to accelerate the discovery of novel chemical matter in drug discovery campaigns:
机译:命中率和铅优化过程通常涉及在临床候选提名之前涉及数千种类似物的设计,合成和分析。命中发现广告系列可能会以探索数百万化合物的虚拟屏幕开头,如果不是更多的话。然而,在药物发现的铅或铅优化阶段中,不经常进行这种计算分析规模。这可能是由于缺乏适当的计算工具,以在硅中产生合成易脱脂的铅状化合物,以及缺乏准确地在大规模上准确地剖面化合物的计算方法。计算能力和方法的最新进步提供了简要比以前可以更大的配体图书馆的能力。在此,我们报告了一种新的计算技术,称为“探测器”,其使用逆转性分析,其次是组合合成以在合成可接近的化学空间中产生新型化合物。在这项工作中,探测器驱动的复合生成,基于云的FEP模拟和主动学习的整合用于快速优化R组,并为细胞周期蛋白依赖性激酶2(CDK2)产生新的核心。使用这种方法,我们探索了> 300 000个想法,执行了> 5000 FEP模拟,并识别> 100个配体,具有预测的IC50 <100nm,包括四个独特的核心。据我们所知,这是迄今为止文献中披露的最大的FEP计算。快速的周转时间和化学勘探规模,表明这是加速药物发现活动中新型化学物质的发现的一种有用方法:

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号