首页> 外文期刊>Journal of chemical theory and computation: JCTC >From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5
【24h】

From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5

机译:从分子碎片到批量:开发MOF-5的神经网络潜力

获取原文
获取原文并翻译 | 示例
           

摘要

The development of first-principles-quality reactive atomistic potentials for organic inorganic hybrid materials is still a substantial challenge because of the very different physics of the atomic interactions from covalent via ionic bonding to dispersion that have to be described in an accurate and balanced way. In this work we used a prototypical metal organic framework, MOF-5, as a benchmark case to investigate the applicability of high-dimensional neural network potentials (HDNNPs) to this class of materials. In HDNNPs, which belong to the class of machine learning potentials, the energy is constructed as a sum of environment-dependent atomic energy contributions. We demonstrate that by the use of this approach it is possible to obtain a high-quality potential for the periodic MOF-5 crystal using density functional theory (DFT) reference calculations of small molecular fragments only. The resulting HDNNP, which has a root-mean-square error (RMSE) of 1.6 meV/atom for the energies of molecular fragments not included in the training set, is able to provide the equilibrium lattice constant of the bulk MOF-5 structure with an error of about 0.1% relative to DFT, and also, the negative thermal expansion behavior is accurately predicted. The total energy RMSE of periodic structures that are completely absent in the training set is about 6.5 meV/atom, with errors on the order of 2 meV/atom for energy differences. We show that in contrast to energy differences, achieving a high accuracy for total energies requires careful variation of the stoichiometries of the training structures to avoid energy offsets, as atomic energies are not physical observables. The forces, which have RMSEs of about 94 meV/a(0) for the molecular fragments and 130 meV/a(0) for bulk structures not included in the training set, are insensitive to such offsets. Therefore, forces, which are the relevant properties for molecular dynamics simulations, provide a realistic estimate of the accuracy of atomistic potentials.
机译:对于有机无机混合材料的第一原理质量活性原子潜力的发展仍然是一个大量挑战,因为通过离子键合与必须以准确和平衡的方式描述的分散体的原子相互作用的物理学。在这项工作中,我们使用了原型金属有机框架,MOF-5,作为基准案例,以研究高维神经网络电位(HDNNPS)对这类材料的适用性。在属于机器学习电位的HDNNP中,能量被构造为环境依赖性原子能贡献的总和。我们证明,通过使用这种方法,可以使用密度泛函理论(DFT)参考计算仅获得所述周期性MOF-5晶体的高质量潜力。得到的HDNNP,其具有1.6meV /原子的根均方误差(Rmse),用于不包括在训练集中的分子片段的能量,能够提供散装MOF-5结构的平衡晶格常数相对于DFT的误差约为0.1%,而且,准确地预测负热膨胀行为。完全在训练集中完全缺席的周期性结构的总能量RMSE约为6.5 meV /原子,误差为2 mev /原子的能量差异。我们表明,与能量差相比,实现总能量的高精度需要仔细变化训练结构的化学测定仪,以避免能量偏移,因为原子能不是物理可观察。对于未包括在训练集中的分子片段和130mev / a(0)的分子片段和130mev / a(0)的力的力对该剪切不敏感,这对于不包括在训练集中的块状结构的力。因此,是分子动力学模拟的相关性能的力,提供了原始势的准确性的现实估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号