首页> 外文期刊>Journal of chemical theory and computation: JCTC >Mechanism of Graphene Formation via Detonation Synthesis: A DFTB Nanoreactor Approach
【24h】

Mechanism of Graphene Formation via Detonation Synthesis: A DFTB Nanoreactor Approach

机译:通过爆轰合成的石墨烯形成机制:DFTB纳米反应器方法

获取原文
获取原文并翻译 | 示例
           

摘要

With the development of theoretical and computational chemistry, as well as high-performance computing, molecular simulation can now be used not only as a tool to explain the experimental results but also as a means for discovery or prediction. Quantum chemical nanoreactor is such a method which can automatically explore the chemical process based only on the basic mechanics without prior knowledge of the reactions. Here, we present a new method which combines the semiempirical quantum mechanical density functional tight-binding (DFTB) method with the nanoreactor molecular dynamic (NMD) method, and we simulated the reaction process of graphene synthesis via detonation at different oxygen/acetylene mole ratios. The formation of graphene is initiated by the breaking of acetylene (C2H2) molecules by collision into pieces such as H atoms, ethynyl (HC C center dot), and vinylidene (H2C=CO radicals. It is followed by the formation of long straight carbon chains coupled with a few branched carbon chains, which then turned into a 2-D framework made of carbon rings. Trace oxygen could modulate the size of the rings during graphene formation and promote the formation of regular graphene with fused six-membered rings as we see, but the addition of high oxygen content makes more C-containing species oxidized to small oxide molecules instead of polymerization. The calculation speed of the DFTB nanoreactor is greatly improved compared to the ab initio nanoreactor, which makes it a valuable option to simulate chemical processes of large sizes and long time scales and to help us uncover the "unknown unknowns".
机译:随着理论和计算化学的发展,以及高性能计算,现在可以使用分子模拟作为解释实验结果的工具,而且可以作为用于发现或预测的手段。量子化学纳米反应器是这种方法,其只能在没有事先知识的反应的情况下自动探索基础的基础力学。在这里,我们提出了一种新的方法,将半透明量子机械密度官能密度紧密(DFTB)方法与纳米反应器分子动态(NMD)方法相结合,并且我们通过在不同氧/乙炔摩尔比的爆炸中模拟了石墨烯合成的反应过程。通过将乙炔(C 2 H 2)分子碰撞成碎片,例如H原子,乙炔基(HC C中心点)和亚乙烯基(H2C = Co自由基,形成石墨烯的形成。随后形成长直碳的形成链接加上几个支链碳链,然后转变为由碳环制成的2-D骨架。痕量氧可以在石墨烯形成期间调节环的大小,并促进正则石墨烯与熔融六元环的形成。我们看,但添加高氧含量使得更多的含C物种氧化成少量氧化物分子而不是聚合。与AB初始纳米反应器相比,DFTB纳米反应器的计算速度大大提高,这使其成为模拟化学品的有价值的选择大尺寸和长时间尺度的过程,并帮助我们揭示“未知未知”。

著录项

  • 来源
  • 作者单位

    Chinese Acad Sci Inst Coal Chem State Key Lab Coal Convers Taiyuan 030001 Shanxi Peoples R China;

    Chinese Acad Sci Inst Coal Chem State Key Lab Coal Convers Taiyuan 030001 Shanxi Peoples R China;

    Beijing Univ Chem Technol State Key Lab Chem Resource Engn Beijing 100029 Peoples R China;

    Chinese Acad Sci Inst Coal Chem State Key Lab Coal Convers Taiyuan 030001 Shanxi Peoples R China;

    Chinese Acad Sci Inst Coal Chem State Key Lab Coal Convers Taiyuan 030001 Shanxi Peoples R China;

    Zhejiang Normal Univ Coll Chem &

    Life Sci Minist Educ Key Lab Adv Catalyt Mat Jinhua 321004 Zhejiang Peoples R China;

    Chinese Acad Sci Inst Coal Chem State Key Lab Coal Convers Taiyuan 030001 Shanxi Peoples R China;

    Chinese Acad Sci Inst Coal Chem State Key Lab Coal Convers Taiyuan 030001 Shanxi Peoples R China;

    Chinese Acad Sci Inst Coal Chem State Key Lab Coal Convers Taiyuan 030001 Shanxi Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学键的量子力学理论;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号