首页> 外文期刊>Journal of chemical theory and computation: JCTC >Ligand Gaussian Accelerated Molecular Dynamics (LiGaMD): Characterization of Ligand Binding Thermodynamics and Kinetics
【24h】

Ligand Gaussian Accelerated Molecular Dynamics (LiGaMD): Characterization of Ligand Binding Thermodynamics and Kinetics

机译:配体高斯加速分子动力学(LIGAMD):配体结合热力学和动力学的表征

获取原文
获取原文并翻译 | 示例
           

摘要

Calculations of ligand binding free energies and kinetic rates are important for drug design. However, such tasks have proven challenging in computational chemistry and biophysics. To address this challenge, we have developed a new computational method, ligand Gaussian accelerated molecular dynamics (LiGaMD), which selectively boosts the ligand non-bonded interaction potential energy based on the Gaussian accelerated molecular dynamics (GaMD) enhanced sampling technique. Another boost potential could be applied to the remaining potential energy of the entire system in a dual-boost algorithm (LiGaMD_Dual) to facilitate ligand binding. LiGaMD has been demonstrated on host-guest and protein-ligand binding model systems. Repetitive guest binding and unbinding in the beta-cyclodextrin host were observed in hundreds-of-nanosecond LiGaMD_Dual simulations. The calculated guest binding free energies agreed excellently with experimental data with <1.0 kcal/mol errors. Compared with converged microsecond-time scale conventional molecular dynamics simulations, the sampling errors of LiGaMD_Dual simulations were also <1.0 kcal/mol. Accelerations of ligand kinetic rate constants in LiGaMD simulations were properly estimated using Kramers' rate theory. Furthermore, LiGaMD allowed us to capture repetitive dissociation and binding of the benzamidine inhibitor in trypsin within 1 mu s simulations. The calculated ligand binding free energy and kinetic rate constants compared well with the experimental data. In summary, LiGaMD provides a powerful enhanced sampling approach for characterizing ligand binding thermodynamics and kinetics simultaneously, which is expected to facilitate computer-aided drug design.
机译:配体的计算无限化能量和动力率对药物设计很重要。然而,这种任务已经证明在计算化学和生物物理学中挑战。为了解决这一挑战,我们开发了一种新的计算方法,配体高斯加速的分子动力学(LIGAMD),其选择性地基于高斯加速分子动力学(GAMD)增强的采样技术来选择性地提高配体的非粘合相互作用势能。在双升压算法(Ligamd_dual)中可以应用于整个系统的剩余势能以促进配体结合的另一个升压电位。 LIGAMD已经在宿主和蛋白质配体绑定模型系统上证明。在数百纳秒的LIGAMD_DUAL模拟中观察到β-环糊精宿主中重复的客人绑定和解密。计算出的客人绑定了无精度的能量,并用具有<1.0 kcal / mol误差的实验数据达成了很棒。与融合的微秒尺度常规分子动力学模拟相比,LigamD_Dual模拟的采样误差也是<1.0千卡/摩尔。利用KRamers速率理论适当地估计Ligamd模拟中的配体动力速率常数的加速度。此外,LIGAMD允许我们捕获在1亩模拟中胰蛋白酶在胰蛋白酶中的重复解离和结合。计算的配体与实验数据相比,无良好的能量和动力速率常数。总之,Ligamd提供了一种强大的增强的采样方法,用于同时表征配体结合热力学和动力学,预计将促进计算机辅助药物设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号