首页> 外文期刊>Journal of chemical theory and computation: JCTC >A Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and Benchmarks
【24h】

A Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and Benchmarks

机译:兴奋状态的登山战略:高度准确的参考能量和基准

获取原文
获取原文并翻译 | 示例
           

摘要

Striving to define very accurate vertical transition energies, we perform both high-level coupled cluster (CC) calculations (up to CCSDTQP) and selected configuration interaction (sCI) calculations (up to several millions of determinants) for 18 small compounds (water, hydrogen sulfide, ammonia, hydrogen chloride, dinitrogen, carbon monoxide, acetylene, ethylene, formaldehyde, methanimine, thioformaldehyde, acetaldehyde, cyclopropene, diazomethane, formamide, ketene, nitrosomethane, and the smallest streptocyanine). By systematically increasing the order of the CC expansion, the number of determinants in the CI expansion as well as the size of the one-electron basis set, we have been able to reach near full CI (FCI) quality transition energies. These calculations are carried out on CC3/aug-cc-pVTZ geometries, using a series of increasingly large atomic basis sets systematically including diffuse functions. In this way, we define a list of 110 transition energies for states of various characters (valence, Rydberg, n - pi*, pi - pi*, singlet, triplet, etc.) to be used as references for further calculations. Benchmark transition energies are provided at the aug-cc-pVTZ level as well as with additional basis set corrections, in order to obtain results close to the complete basis set limit. These reference data are used to benchmark a series of 12 excited-state wave function methods accounting for double and triple contributions, namely ADC(2), ADC(3), CIS(D), CIS(D-infinity), CC2, STEOM-CCSD, CCSD, CCSDR(3), CCSDT-3, CC3, CCSDT., and CCSDTQ It turns out that CCSDTQ yields a negligible difference with the extrapolated CI values with a mean absolute error as small as 0.01 eV, whereas the coupled cluster approaches including iterative triples are also very accurate (mean absolute error of 0.03 eV). Consequently, CCSDT-3 and CC3 can be used to define reliable benchmarks. This observation does not hold for ADC(3) that delivers quite large errors for this set of small compounds, with a clear tendency to overcorrect its second-order version, ADC(2). Finally, we discuss the possibility to use basis set extrapolation approaches so as to tackle more easily larger compounds.
机译:努力定义非常精确的垂直转换能量,我们执行高级耦合集群(CC)计算(最多CCSDTQP)和选择的配置相互作用(SCI)计算(最多数百万几百万分之一的决定簇)对于18个小化合物(水,氢气硫化物,氨,氯化氢,二氮,一氧化碳,乙炔,乙烯,甲醛,甲基亚胺,硫代甲醛,乙醛,环丙烯,重氮甲烷,甲酰胺,酮,亚硝基甲烷和最小的串链胺)。通过系统地增加CC扩展的顺序,CI扩展中的决定因素的数量以及单电子基数的尺寸,我们已经能够达到完整的CI(FCI)质量转换能量。这些计算在CC3 / AUG-CC-PVTZ几何形状上进行,系统地使用一系列越来越大的原子基集,包括漫反射功能。通过这种方式,我们定义了用于各种字符的状态的110转换能量的列表(价,rydberg,n - & pi *,pi - & pi *,singlet,triplet等)以进一步用作参考计算。基准转换能量在Aug-CC-PVTZ级别提供以及附加的基础设置校正,以便获得接近完整基础设定限制的结果。这些参考数据用于基准测试一系列12兴奋状态波函数方法,用于双倍和三重贡献,即ADC(2),ADC(3),CIS(D),CIS(D-Infinity),CC2,Steom -CCSD,CCSD,CCSDR(3),CCSDT-3,CC3,CCSDT和CCSDTQ事实证明,CCSDTQ与外推CI值产生可忽略的差异,具有小于0.01eV的平均绝对误差,而耦合群集包括迭代三元组的方法也非常准确(平均误差为0.03eV)。因此,CCSDT-3和CC3可用于定义可靠的基准。该观察不适用于ADC(3),该ADC(3)为这套小型化合物提供了相当大的误差,并且显然倾向于过正常,其二阶版本ADC(2)。最后,我们讨论了使用基础设定的外推方法的可能性,以便更容易地解决更大的化合物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号