...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Machine-Learned Fragment-Based Energies for Crystal Structure Prediction
【24h】

Machine-Learned Fragment-Based Energies for Crystal Structure Prediction

机译:基于机器学习的基于片段的晶体结构预测能量

获取原文
获取原文并翻译 | 示例
           

摘要

Crystal structure prediction involves a search of a complex configurational space for local minima corresponding to stable crystal structures, which can be performed efficiently using atom-atom force fields for the assessment of intermolecular interactions. However, for challenging systems, the limitations in the accuracy of force fields prevent a reliable assessment of the relative thermodynamic stability of potential structures, while the cost of fully quantum mechanical approaches can limit applications of the methods. We present a method to rapidly improve force field lattice energies by correcting two-body interactions with a higher level of theory in a fragment-based approach and predicting these corrections with machine learning. Corrected lattice energies with commonly used density functionals and second order perturbation theory (MP2) all significantly improve the ranking of experimentally known polymorphs where the rigid molecule model is applicable. The relative lattice energies of known polymorphs are also found to systematically improve with the fragment corrections. Predicting two-body interactions with atom-centered symmetry functions in a Gaussian process is found to give highly accurate results using as little as 10-20% of the data for training, reducing the cost of the energy correction by up to an order of magnitude. The machine learning approach opens up the possibility of more widespread use of fragment-based methods in crystal structure prediction, whose increased accuracy at a low computational cost will benefit applications in areas such as polymorph screening and computer-guided materials discovery.
机译:晶体结构预测涉及搜索对应于稳定晶体结构的局部最小值的复杂配置空间,其可以使用原子原子力场有效地执行用于评估分子间相互作用。然而,对于具有挑战性的系统,力场精度的限制可防止对潜在结构的相对热力学稳定性的可靠评估,而完全量子机械方法的成本可以限制方法的应用。我们展示了一种通过以基于片段的方法校正与更高水平的理论的双体相互作用来快速改善力场晶格能量的方法,并通过机器学习预测这些校正。校正具有常用密度函数的晶格能量和二阶扰动理论(MP2)全部提高了实验已知的多晶型物的排名,其中刚性分子模型适用。还发现已知多晶型物的相对晶格能量以通过片段校正系统地改善。发现在高斯过程中预测与原子对称函数的双体相互作用,使用距离训练的10-20%的数据提供高度准确的结果,从而将能量校正的成本降低到大量级。机器学习方法开辟了在晶体结构预测中更广泛地使用基于片段的方法的可能性,其晶体结构预测中的精度提高了,低计算成本将受益于多晶型筛选和计算机引导材料发现的区域中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号