首页> 外文期刊>Journal of chemical theory and computation: JCTC >Estimating Systematic Error and Uncertainty in Ab Initio Thermochemistry: II. ATOMIC(hc) Enthalpies of Formation for a Large Set of Hydrocarbons
【24h】

Estimating Systematic Error and Uncertainty in Ab Initio Thermochemistry: II. ATOMIC(hc) Enthalpies of Formation for a Large Set of Hydrocarbons

机译:AB Initio Thermochemistic估算系统误差与不确定性:II。 大量碳氢化合物形成的原子(HC)焓

获取原文
获取原文并翻译 | 示例
           

摘要

ATOMIC is a thermochemistry protocol geared toward larger molecules with first-row atoms. It implements Pople's concept of bond separation reactions in an ab initio fashion and so enhances the accuracy of midlevel composite models for atomization energies. Recently we have introduced ATOMIC(hc), a model for applications to hydrocarbons, that estimates bias and uncertainty for each of the components contributing to the ATOMIC bottom-of-the -well atomization energy (Bakowies, D. J. Chem. Theory Comput. 2019, IS, 5230-5251). Here we scrutinize the remaining components of the ATOMIC protocol, including midlevel composite models to approximate the complete-basis set (CBS) limit of CCSD(T) as well as zero-point energies (ZPEs) and thermal enthalpy increments that are evaluated from scaled harmonic MP2 frequencies. Potential errors relating to imperfections in MP2 geometries and ZPEs are estimated using auxiliary information obtained from geometry optimizations and frequency calculations at the density functional (B3LYP) level. Overall corrections to and uncertainties of enthalpies of formation are obtained from summation and error propagation, respectively. The error and uncertainty model is validated with accurate data from the Active Thermochemical Tables (ATcT) and compared to earlier statistical assessments for the G3/99 benchmark. The proposed model is a welcome alternative to statistical assessment, first because it does not depend on comparison with experiment, second because it recognizes the expected scaling of error with system size, and third because it provides a detailed account of the importance of various contributions to overall error and uncertainty. The evaluation of ZPEs from scaled harmonic frequencies expectedly emerges as the leading source of uncertainty if highly accurate composite models are used to treat the electronic problem, but uncertainties are usually balanced with those arising from computationally more attractive B level (B-1 center dot center dot center dot B-6) models to estimate the CBS limit of CCSD(T). ATOMIC(hc) enthalpies of formation, complete with uncertainty estimates, are reported for 161 hydrocarbons ranging in size from methane (CH4) to [8]circulene (C32H16) and tetra-tert-butyltetrahedrane (C20H36). Experimental data are available for 127 molecules but cannot be reconciled with theory in 37 cases. Theory helps to identify the more accurate among conflicting experimental values in 11 cases and emerges as a valuable complement to experiment also for larger molecules, provided that fair estimates of uncertainty are available.
机译:原子是朝向具有第一行原子的较大分子的热化学协议。它将Pople的债券分离反应概念以AB Initio时尚实施,因此提高了Midlevel复合模型的雾化能量的准确性。最近我们已经引入了原子(HC),用于碳氢化合物的型号,这估计了每个组件的偏差和不确定度,这些组分有助于原子底雾化能量(Bakowies,DJ Chem。理论计算。2019,是5230-5251)。在这里,我们仔细审查了原子协议的剩余组件,包括MIDlevel复合模型,以近似CCSD(T)的完整基础集(CBS)限制以及从缩放评估的零点能量(ZPES)和热焓增量谐波MP2频率。使用从几何优化和密度函数(B3LYP)电平的频率计算获得的辅助信息来估计与MP2几何形状和ZPE中的缺陷相关的潜在误差。形成的整体矫正和形成焓的不确定性分别从总结和误差传播获得。误差和不确定性模型以有源热化学表(ATCT)的准确数据验证,并与早期的G3 / 99基准测试进行比较。拟议的模型是统计评估的受欢迎替代品,首先是因为它不依赖于与实验的比较,其次是因为它识别出系统大小的误差的预期缩放,而第三,因为它提供了各种贡献的重要性的详细说明总体错误和不确定性。从缩放谐波频率的ZPE评估预期出现,因为如果使用高精度的复合模型来治疗电子问题,则不确定性,但不确定性通常与从计算更具吸引力的B级(B-1中心DOT中心产生的那些)平衡DOT中心点B-6)模型来估算CCSD(T)的CBS限制。据报道,原子(HC)形成的形成焓,据报道,从甲烷(CH4)至循环(C32H16)和四叔丁基四乙烷(C20H36)的甲烷(CH4)至[8]循环(C20H36)的大小范围内的161个烃。实验数据可用于127个分子,但在37例中不能与理论进行调和。理论有助于在11例中识别相互矛盾的实验值之间更准确,并作为对较大分子的实验的有价值补充,条件是提供了不确定性的公平估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号