首页> 外文期刊>Journal of chemical theory and computation: JCTC >Environmental Effects with Frozen-Density Embedding in Real-Time Time-Dependent Density Functional Theory Using Localized Basis Functions
【24h】

Environmental Effects with Frozen-Density Embedding in Real-Time Time-Dependent Density Functional Theory Using Localized Basis Functions

机译:使用本地化基本函数在实时时间依赖性密度函数理论中嵌入冻结密度的环境影响

获取原文
获取原文并翻译 | 示例
           

摘要

Frozen-density embedding (FDE) represents a versatile embedding scheme to describe the environmental effect on electron dynamics in molecular systems. The extension of the general theory of FDE to the real-time time-dependent Kohn-Sham method has previously been presented and implemented in plane waves and periodic boundary conditions [Pavanello, M.; et al. J. Chem. Phys. 2015, 142, 154116]. In the current paper, we extend our recent formulation of the real-time time-dependent Kohn-Sham method based on localized basis set functions and developed within the Psi4NumPy framework to the FDE scheme. The latter has been implemented in its "uncoupled" flavor (in which the time evolution is only carried out for the active subsystem, while the environment subsystems remain at their ground state), using and adapting the FDE implementation already available in the PyEmbed module of the scripting framework PyADF. The implementation was facilitated by the fact that both Psi4NumPy and PyADF, being native Python API, provided an ideal framework of development using the Python advantages in terms of code readability and reusability. We employed this new implementation to investigate the stability of the time-propagation procedure, which is based on an efficient predictor/corrector second-order midpoint Magnus propagator employing an exact diagonalization, in combination with the FDE scheme. We demonstrate that the inclusion of the FDE potential does not introduce any numerical instability in time propagation of the density matrix of the active subsystem, and in the limit of the weak external field, the numerical results for low-lying transition energies are consistent with those obtained using the reference FDE calculations based on the linear-response TDDFT. The method is found to give stable numerical results also in the presence of a strong external field inducing nonlinear effects. Preliminary results are reported for high harmonic generation (HHG) of a water molecule embedded in a small water cluster. The effect of the embedding potential is evident in the HHG spectrum reducing the number of the well-resolved high harmonics at high energy with respect to the free water. This is consistent with a shift toward lower ionization energy passing from an isolated water molecule to a small water cluster. The computational burden for the propagation step increases approximately linearly with the size of the surrounding frozen environment. Furthermore, we have also shown that the updating frequency of the embedding potential may be significantly reduced, much less than one per time step, without jeopardizing the accuracy of the transition energies.
机译:冻结密度嵌入(FDE)代表了一种通用的嵌入方案,以描述分子系统中电子动力学的环境影响。 FDE将军理论的延伸以前已经在平面波和周期边界条件下呈现和实施了实时时间依赖性Kohn-Sham方法[Pavanello,M。;等等。 J.Chem。物理。 2015,142,154116]。在目前的论文中,我们最近基于本地化基础集功能的实时时间依赖性Kohn-Sham方法,并在PSI4Numpy框架内开发到FDE方案。后者已在其“未耦”的味道中实现(其中时间进化仅为活动子系统执行,而环境子系统仍然处于其基态),使用并调整已在Pyembed模块中使用的FDE实现脚本框架pyadf。 PSI4Numpy和PyADF是本机Python API的事实,实现了实施,提供了使用Python优势在代码可读性和可重用性方面的理想开发框架。我们采用了这种新的实现来研究时间传播过程的稳定性,该过程基于采用精确对角线的有效预测器/校正器二阶中点Magnus传播器与FDE方案结合使用。我们证明包含FDE电位的时间不会在活动子系统密度矩阵的时间传播中引入任何数值不稳定性,并且在弱外场的极限中,低位过渡能量的数值结果与那些一致基于线性响应TDDFT使用参考FDE计算获得。发现该方法在存在强大的外部场诱导非线性效果的情况下也给出稳定的数值结果。据报道,嵌入在小水簇中的水分子的高谐波产生(HHG)的初步结果。在HHG频谱中,嵌入潜力的效果在高能量相对于游离水中降低了高能量的良好分辨高谐波的数量。这与从分离的水分子转移到小水簇的降低电离能量的转变。传播步骤的计算负担随着周围冻结环境的大小而大致线性增加。此外,我们还示出了嵌入电位的更新频率可以显着降低,远低于每个时间步长,而不会危及过渡能量的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号