首页> 外文期刊>Journal of chemical theory and computation: JCTC >HFLD: A Nonempirical London Dispersion-Corrected Hartree–Fock Method for the Quantification and Analysis of Noncovalent Interaction Energies of Large Molecular Systems?
【24h】

HFLD: A Nonempirical London Dispersion-Corrected Hartree–Fock Method for the Quantification and Analysis of Noncovalent Interaction Energies of Large Molecular Systems?

机译:HFLD:一种非悬浮伦敦色散矫正Hartree-Fock方法,用于大分子系统非共价相互作用能量的量化和分析?

获取原文
获取原文并翻译 | 示例
           

摘要

A nonempirical quantum mechanical method for the efficient and accurate quantification and analysis of intermolecular interactions is presented and tested on existing benchmark sets. The leading idea here is to focus on the intermolecular part of the correlation energy that contains the all-important London dispersion (LD) interaction. To keep the cost of the method low, essentially at the level of a Hartree–Fock (HF) calculation, the intramolecular part of the correlation energy is neglected. We also neglect the nondispersive parts of the intermolecular correlation energy. This scheme that we denote as Hartree–Fock plus London dispersion (HFLD) can be readily realized on the basis of the recently reported multilevel implementation of the domain-based local pair natural orbital coupled-cluster (DLPNO-CC) theory in conjunction with the well-established local energy decomposition (LED) analysis. The accuracy and efficiency of the HFLD method are evaluated on rare gas dimers, on the S66 and L7 benchmark sets of noncovalent interactions, and on an additional set (LP14) consisting of bulky Lewis pairs held together by intermolecular interactions of various strengths, with interaction energies ranging from ?8 to ?107 kcal/mol. It is first shown that the LD energy calculated with this approach is essentially identical to that obtained from the full DLPNO-CCSD(T)/LED calculation, with a mean absolute error of 0.2 kcal/mol on the S66 benchmark set. Moreover, in terms of the overall interaction energies, the HFLD method shows an efficiency that is comparable to that of the HF method, while retaining an accuracy between that of the DLPNO-CCSD and DLPNO-CCSD(T) schemes. Since the underlying DLPNO-CCSD method is linear scaling with respect to the system size, the HFLD approach also does not lead to new bottlenecks for large systems. As an illustrative example of its efficiency, the HFLD scheme was applied to the interaction between the substrate and the residues in the active site of the cyclohexanone monooxygenase enzyme. The excellent cost/performance ratio indicates that the HFLD method opens new avenues for the accurate calculation and analysis of noncovalent interaction energies in large molecular systems.
机译:在现有的基准组上呈现和测试了一种非常见量子机械方法,用于高效和准确量化和分子间相互作用分析。这里的主导想法是关注包含全部重要伦敦色散(LD)交互的相关能量的分子间部分。为了保持该方法的成本低,基本上处于Hartree-Fock(HF)计算的水平,忽略了相关能量的分子内部分。我们还忽略了分子间相关能量的非渗透部分。我们表示为Hartree-Fock Plus伦敦分散(HFLD)的方案,可以在最近报告的基于域的本地对自然轨道耦合集群(DLPNO-CC)理论的基础上,随着最近报道的多级实施方式,可以容易地实现良好的局部能量分解(LED)分析。在稀有气体二聚体上进行HFLD方法的精度和效率,在S66和L7基准组中的非共价相互作用组中,以及由各种强度的分子间相互作用在一起的额外组(LP14)组成,具有相互作用的分子间相互作用能量从?8到?107 kcal / mol。首先表明,利用该方法计算的LD能量基本上与从全DLPNO-CCSD(T)/ LED计算获得的LD能量相同,在S66基准组上具有0.2千卡/ mol的平均绝对误差。此外,就整体交互能量而言,HFLD方法显示了与HF方法相当的效率,同时保留DLPNO-CCSD和DLPNO-CCSD(T)方案之间的精度。由于底层DLPNO-CCSD方法是关于系统大小的线性缩放,因此HFLD方法也不会导致大型系统的新瓶颈。作为其效率的说明性示例,将HFLD方案应用于环己酮单氧基酶的活性位点之间的基材和残基之间的相互作用。优异的成本/性能比表明HFLD方法为大分子系统中的非共价交互能量进行准确计算和分析的新途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号