首页> 外文期刊>Journal of chemical theory and computation: JCTC >Unveiling the Finite Temperature Physics of Hydrogen Chains via Auxiliary Field Quantum Monte Carlo
【24h】

Unveiling the Finite Temperature Physics of Hydrogen Chains via Auxiliary Field Quantum Monte Carlo

机译:通过辅助场蒙特卡罗揭示氢链的有限温度物理

获取原文
获取原文并翻译 | 示例
           

摘要

The ability to accurately predict the finite temperature properties and phase diagrams of realistic quantum solids is central to uncovering new phases and engineering materials with novel properties ripe for device applications. Nonetheless, there remain comparatively few many-body techniques capable of elucidating the finite temperature physics of solids from first principles. In this work, we take a significant step toward developing such a technique by generalizing our previous, exact fully ab initio finite temperature Auxiliary Field Quantum Monte Carlo (FT-AFQMC) method to model periodic solids and employing it to uncover the finite temperature physics of periodic hydrogen chains. Our chains’ unit cells consist of 10 hydrogen atoms modeled in a minimal basis, and we sample 5 k-points from the first Brillouin zone to arrive at a supercell consisting of 50 orbitals and 50 electrons. Based upon our calculations of these chains’ many-body energies, free energies, entropies, heat capacities, double and natural occupancies, and charge and spin correlation functions, we outline their metal–insulator and magnetic ordering as a function of both H–H bond distance and temperature. At low temperatures approaching the ground state, we observe both metal–insulator and ferromagnetic–antiferromagnetic crossovers at bond lengths between 0.5 and 0.75 ?. We then demonstrate how this low-temperature ordering evolves into a metallic phase with decreasing magnetic order at higher temperatures. In order to contextualize our results, we compare the features we observe to those previously seen in one-dimensional, half-filled Hubbard models at finite temperature and in ground state hydrogen chains. Interestingly, we identify signatures of the Pomeranchuk effect in hydrogen chains for the first time and show that spin and charge excitations that typically arise at distinct temperatures in the Hubbard model are indistinguishably coupled in these systems. Beyond qualitatively revealing the many-body phase behavior of hydrogen chains in a numerically exact manner without invoking the phaseless approximation, our efforts shed light on the further theoretical developments that will be required to construct the phase diagrams of the more complex transition metal, lanthanide, and actinide solids of longstanding interest to physicists.
机译:准确预测现实量子固体的有限温度和相图是揭示新阶段和工程材料的核心,具有用于器件应用的新颖性质。尽管如此,仍然存在相对较少的许多身体技术,能够从第一原理阐明固体的有限温度物理学。在这项工作中,我们通过推广我们之前的概括,提出了这种技术的重要一步,即确切的完全 AB Initio有限温度辅助场云墨镜(FT-AFQMC)方法,以模拟周期性固体并将其用作揭示周期性氢链的有限温度物理学。我们的链单元细胞由10个以最小基础建模的10个氢原子组成,并且我们从第一个布里渊区采样5 k点,到达由50个轨道和50个电子组成的超级电池。基于我们计算这些链条的许多身体能量,自由能,熵,热量,双重和自然占用,以及充电和旋转相关功能,我们概述了它们的金属绝缘体和磁性排序作为H-H的函数键距离和温度。在接近地面状态的低温下,我们观察金属绝缘体和铁磁 - 反铁磁体横梁在0.5和0.75之间的键合长度之间?。然后,我们证明了这种低温排序如何在较高温度下降低磁场的金属相位。为了使我们的结果进行了背景化,我们将我们观察到以前在一维的半填充船体模型中观察到的特征在有限温度和地面氢链中的特征。有趣的是,我们首次识别氢链中Pomeranchuk效应的签名,并且表明通常在哈贝德模型中的不同温度下产生的旋转和电荷激发在这些系统中毫无疑问地联系。超出定性地揭示氢链的多体相位行为以数值精确的方式,而不调用可释放近似,我们的努力揭示了将需要构建更复杂的过渡金属,镧系元素的相图的进一步理论开发,和神奇的物理学家长期兴趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号