首页> 外文学位 >Advancements in the path integral Monte Carlo method for many-body quantum systems at finite temperature.
【24h】

Advancements in the path integral Monte Carlo method for many-body quantum systems at finite temperature.

机译:有限温度下多体量子系统路径积分蒙特卡罗方法的进展。

获取原文
获取原文并翻译 | 示例

摘要

Path integral Monte Carlo (PIMC) is a quantum-level simulation method based on a stochastic sampling of the many-body thermal density matrix. Utilizing the imaginary-time formulation of Feynman's sum-over-histories, it includes thermal fluctuations and particle correlations in a natural way. Over the past two decades, PIMC has been applied to the study of the electron gas, hydrogen under extreme pressure, and superfluid helium with great success. However, the computational demand scales with a high power of the atomic number, preventing its application to systems containing heavier elements. In this dissertation, we present the methodological developments necessary to apply this powerful tool to these systems.; We begin by introducing the PIMC method. We then explain how effective potentials with position-dependent electron masses can be used to significantly reduce the computational demand of the method for heavier elements, while retaining high accuracy. We explain how these pseudohamiltonians can be integrated into the PIMC simulation by computing the density matrix for the electron-ion pair. We then address the difficulties associated with the long-range behavior of the coulomb potential, and improve a method to optimally partition particle interactions into real-space and reciprocal-space summations. We discuss the use of twist-averaged boundary conditions to reduce the finite-size effects in our simulations and the fixed-phase method needed to enforce the boundary conditions. Finally, we explain how a PIMC simulation of the electrons can be coupled to a classical Langevin dynamics simulation of the ions to achieve an efficient sampling of all degrees of freedom.; After describing these advancements in methodology, we apply our new technology to fluid sodium near its liquid-vapor critical point. In particular, we explore the microscopic mechanisms which drive the continuous change from a dense metallic liquid to an expanded insulating vapor above the critical temperature. We show that the dynamic aggregation and dissociation of clusters of atoms play a significant role in determining the conductivity and that the formation of these clusters is highly density and temperature dependent. Finally, we suggest several avenues for research to further improve our simulations.
机译:路径积分蒙特卡洛(PIMC)是基于多体热密度矩阵的随机采样的量子级仿真方法。利用费曼求和历史的虚构时间公式,它以自然的方式包括热涨落和粒子相关性。在过去的二十年中,PIMC已被广泛用于电子气,极压下的氢和超流氦的研究。但是,计算需求随原子序数的高次幂缩放,从而阻止了其在包含较重元素的系统中的应用。在本文中,我们提出了将这种强大的工具应用于这些系统所必需的方法学发展。我们首先介绍PIMC方法。然后,我们将解释如何使用具有依赖位置的电子质量的有效电势来显着减少该方法对较重元素的计算需求,同时又保持较高的精度。我们解释了如何通过计算电子离子对的密度矩阵将这些伪哈密顿主义者整合到PIMC模拟中。然后,我们解决与库仑电势的远程行为相关的困难,并改进一种将粒子相互作用最佳地划分为实空间和倒数空间求和的方法。在我们的仿真中,我们讨论了使用扭曲平均边界条件来减小有限大小的影响,以及讨论了强制执行边界条件所需的固定相位方法。最后,我们解释了如何将电子的PIMC模拟与离子的经典Langevin动力学模拟耦合起来,以实现所有自由度的有效采样。在描述了方法学上的这些进步之后,我们将我们的新技术应用于液-液临界点附近的液钠。特别是,我们探索了微观机制,这些机制驱使从致密金属液体到临界温度以上的膨胀绝缘蒸气的连续变化。我们表明,原子团簇的动态聚集和解离在确定电导率中起着重要作用,并且这些团簇的形成高度依赖于温度和密度。最后,我们提出了一些研究途径,以进一步改善我们的仿真。

著录项

  • 作者

    Esler, Kenneth Paul.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Physics Condensed Matter.; Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号