...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Artificial Neural Networks Applied as Molecular Wave Function Solvers
【24h】

Artificial Neural Networks Applied as Molecular Wave Function Solvers

机译:人工神经网络施用为分子波功能求解器

获取原文
获取原文并翻译 | 示例
           

摘要

We use artificial neural networks (ANNs) based on the Boltzmann machine (BM) architectures as an encoder of ab initio molecular many-electron wave functions represented with the complete active space configuration interaction (CAS-CI) model. As first introduced by the work of Carleo and Troyer for physical systems, the coefficients of the electronic configurations in the CI expansion are parametrized with the BMs as a function of their occupancies that act as descriptors. This ANN-based wave function ansatz is referred to as the neural-network quantum state (NQS). The machine learning is used for training the BMs in terms of finding a variationally optimal form of the ground-state wave function on the basis of the energy minimization. It is relevant to reinforcement learning and does not use any reference data nor prior knowledge of the wave function, while the Hamiltonian is given based on a user-specified chemical structure in the first-principles manner. Carleo and Troyer used the restricted Boltzmann machine (RBM), which has hidden units, for the neural network architecture of NQS, while, in this study, we further introduce its replacement with the BM that has only visible units but with different orders of connectivity. For this hidden-node free BM, the second- and third-order BMs based on quadratic and cubic energy functions, respectively, were implemented. We denote these second- and third-order BMs as BM2 and BM3, respectively. The pilot implementation of the NQS solver into an exact diagonalization module of the quantum chemistry program was made to assess the capability of variants of the BM-based NQS. The test calculations were performed by determining the CAS-CI wave functions of illustrative molecular systems, indocyanine green, and dinitrogen dissociation. The simulated energies have been shown to converge to CAS-CI energy in most cases by improving RBM with an increasing number of hidden nodes. BM3 systematically yields lower energies than BM2, reproducing the CAS-CI energies of dinitrogen across potential energy curves within an error of 50 mu E-h.
机译:我们使用基于Boltzmann机器(BM)架构的人工神经网络(ANNS)作为用完全有源空间配置交互(CAS-CI)模型表示的AB Initio分子许多电子波函数的编码器。如第一次由Carleo和Tryoyer用于物理系统的工作引入,CI扩展中的电子配置的系数是与BMS的参数化,作为其占据作为描述符的占用。该基于ANN的波函数ANSATZ称为神经网络量子状态(NQS)。在基于能量最小化的基础上,机器学习用于训练基础状态波函数的变分最佳形式的训练BMS。它与强化学习有关,并且不使用任何参考数据,也不使用波浪功能的先验知识,而汉密尔顿人以第一原理方式的用户指定的化学结构为基础给出。 Carleo和Tryoyer使用了限制的Boltzmann机器(RBM),该机器(RBM)具有隐藏单元的NQS的神经网络架构,而在本研究中,我们进一步引入了只有可见单元的BM更换,但具有不同的连接顺序。对于此隐藏节点免费BM,实现了基于二次和立方能量函数的第二和三阶BMS。我们将这些第二和三阶BMS分别表示为BM2和BM3。进行了NQS求解器进入量子化学计划精确的对角化模块的导频实现,以评估基于BM的NQS的变体的能力。通过确定说明性分子系统,吲哚菁绿和二煤解离的CAS-CI波函数进行测试计算。通过用越来越多的隐藏节点改进RBM,已经显示模拟能量在大多数情况下会聚到CAS-CI能量。 BM3系统地产生比BM2更低的能量,在50 mu E-H的误差内再现潜在能量曲线的DINITROG的CAS-CI能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号