首页> 外文期刊>Journal of chemical theory and computation: JCTC >Parallel Implementation of Density Functional Theory Methods in the Quantum Interaction Computational Kernel Program
【24h】

Parallel Implementation of Density Functional Theory Methods in the Quantum Interaction Computational Kernel Program

机译:Quantum交互计算内核程序中密度泛函理论方法的平行实现

获取原文
获取原文并翻译 | 示例
           

摘要

We present the details of a graphics processing unit (GPU) capable exchange correlation (XC) scheme integrated into the open source QUantum Interaction Computational Kernel (QUICK) program. Our implementation features an octree based numerical grid point partitioning scheme, GPU enabled grid pruning and basis and primitive function prescreening, and fully GPU capable XC energy and gradient algorithms. Benchmarking against the CPU version demonstrated that the GPU implementation is capable of delivering an impressive performance while retaining excellent accuracy. For small to medium size protein/organic molecular systems, the realized speedups in double precision XC energy and gradient computation on a NVIDIA V100 GPU were 60–80-fold and 140–500-fold, respectively, as compared to the serial CPU implementation. The acceleration gained in density functional theory calculations from a single V100 GPU significantly exceeds that of a modern CPU with 40 cores running in parallel.
机译:我们介绍集成到开源量子交互计算内核(快速)程序中的图形处理单元(GPU)的交换相关(XC)方案的详细信息。 我们的实现具有基于OctREE基于的数控点分区方案,GPU支持的网格修剪和基本函数预筛选,以及完全GPU能力XC能量和梯度算法。 对CPU版本的基准测试表明,GPU实施能够提供令人印象深刻的性能,同时保持优异的准确性。 对于中小型蛋白/有机分子系统,与串行CPU实现相比,NVIDIA V100 GPU上的双精度XC能量和梯度计算的实现加速度分别为60-80倍,140-500倍。 从单个V100 GPU的密度泛函理论计算中获得的加速度显着超过了具有40个并行运行的核心的现代CPU的加速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号