首页> 外文期刊>Journal of chemical theory and computation: JCTC >Electrostatic Potential Optimized Molecular Models for Molecular Simulations: CO, CO2, COS, H2S, N2, N2O, and SO2
【24h】

Electrostatic Potential Optimized Molecular Models for Molecular Simulations: CO, CO2, COS, H2S, N2, N2O, and SO2

机译:用于分子模拟的静电电位优化分子模型:CO,CO2,COS,H2S,N2,N2O和SO2

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular simulations have been widely employed in the discovery of nanoporous materials, such as metal–organic frameworks (MOFs) and zeolite, for energy- and environment-related applications. To achieve simulation predictions with better accuracy, we herein present a collection of molecular models, including carbon monoxide (CO), carbon dioxide (CO_(2)), carbonyl sulfide (COS), hydrogen sulfide (H_(2)S), nitrogen (N_(2)), nitrous oxide (N_(2)O), and sulfur dioxide (SO_(2)). These models, denoted as electrostatic potential optimized molecular models (ESP-MMs), are systematically developed to not only reproduce experimental vapor–liquid equilibrium but also have accurate electrostatic potential representation surrounding the molecules. Our results show that, with accurate electrostatic potential representations, ESP-MMs can offer improved predictions in a variety of adsorption properties for porous materials, including MOFs with open-metal sites and all-silica zeolites. Specifically, by using ESP-MMs, the binding geometry and adsorption energy landscape can be well captured. This enables these models to be employed to unravel the fundamental mechanism of gaseous adsorption in materials of interest as well as to facilitate the parametrization of adsorbent–adsorbate interactions. We also demonstrate that, combined with generic force fields for adsorbents, ESP-MMs can offer reasonable predictions in adsorption isotherms. Although these ESP-MMs use a relatively simple and nonpolarizable potential form for the sake of efficiency and applicability, their accuracy has been extensively validated in this study. Furthermore, the set of Lennard-Jones potentials with static point charges adopted for ESP-MMs can be readily implemented in all available simulation packages. We anticipate that these ESP-MMs can largely facilitate future computational studies of porous materials for gas separation and removal.
机译:分子模拟已广泛用于发现纳米多孔材料,例如金属有机骨架(MOF)和沸石,用于能量和环境相关的应用。为了实现具有更好的准确性的模拟预测,我们在本文中提出了一系列分子模型,包括一氧化碳(CO),二氧化碳(CO_(2)),硫化硫醚(COS),硫化氢(H_(2)),氮气(N_(2)),氧化二氮(N_(2)O)和二氧化硫(SO_(2))。这些模型表示为静电电位优化的分子模型(ESP-MMS),以系统地开发成不仅重现实验蒸汽 - 液体平衡,而且还具有围绕分子的准确的静电潜在表示。我们的研究结果表明,具有精确的静电潜在表示,ESP-MMS可以在多孔材料中提供各种吸附性能的改进预测,包括具有开放式金属位点和全硅沸石的MOF。具体地,通过使用ESP-MMS,可以很好地捕获绑定几何形状和吸附能量景观。这使得这些模型能够用于解开感兴趣材料中气态吸附的基本机制,以及促进吸附吸附相互作用的参数化。我们还证明,与吸附剂的通用力领域相结合,ESP-MMS可以在吸附等温线中提供合理的预测。虽然这些ESP-MMS使用了效率和适用性的相对简单和不可偏大的潜在形式,但在本研究中,它们的准确性已被广泛验证。此外,在所有可用的模拟包中可以很容易地实现用于ESP-MMS采用的静态点电荷的Lennard-Jones电机集。我们预计这些ESP-MMS可以在很大程度上促进对多孔材​​料的未来计算研究进行气体分离和去除。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号